角三分法,巴斯卡拉证明,勾股定理

Q4 Multidisciplinary
Emiliano De Catalina
{"title":"角三分法,巴斯卡拉证明,勾股定理","authors":"Emiliano De Catalina","doi":"10.32871/RMRJ2109.01.01","DOIUrl":null,"url":null,"abstract":"This paper deals with 1) angle trisection, 2) Bhaskara’s first proof, and 3) Pythagorean theorem. The purpose of this paper is threefold. First, to show a new, direct method of trisecting the 900 angle using unmarked straight edge and compass; secondly, to show Bhaskara’s first proof of the Pythagorean theorem (c2 = a2 + b2) as embedded in this new, direct trisection of the 900 angle; lastly, to show the derivation of the Pythagorean theorem from this trisection of the 900 angle. This paper employs the direct dissection method. It concludes by presenting four points: a) the concept of trisectability as distinct from concept of constructability; b) the trisection of the 900 angle as really a new, different method; c) Bhaskara’s first proof of the Pythagorean theorem as truly embedded in this trisection of the 900 angle and; d) another way of deriving Pythagorean theorem from this trisection of the 900 angle.","PeriodicalId":34442,"journal":{"name":"Recoletos Multidisciplinary Research Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Angle Trisection, Bhaskara’s Proof, and Pythagorean Theorem\",\"authors\":\"Emiliano De Catalina\",\"doi\":\"10.32871/RMRJ2109.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with 1) angle trisection, 2) Bhaskara’s first proof, and 3) Pythagorean theorem. The purpose of this paper is threefold. First, to show a new, direct method of trisecting the 900 angle using unmarked straight edge and compass; secondly, to show Bhaskara’s first proof of the Pythagorean theorem (c2 = a2 + b2) as embedded in this new, direct trisection of the 900 angle; lastly, to show the derivation of the Pythagorean theorem from this trisection of the 900 angle. This paper employs the direct dissection method. It concludes by presenting four points: a) the concept of trisectability as distinct from concept of constructability; b) the trisection of the 900 angle as really a new, different method; c) Bhaskara’s first proof of the Pythagorean theorem as truly embedded in this trisection of the 900 angle and; d) another way of deriving Pythagorean theorem from this trisection of the 900 angle.\",\"PeriodicalId\":34442,\"journal\":{\"name\":\"Recoletos Multidisciplinary Research Journal\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recoletos Multidisciplinary Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32871/RMRJ2109.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recoletos Multidisciplinary Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32871/RMRJ2109.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了1)角三切分,2)Bhaskara第一次证明,3)勾股定理。本文的目的有三个。首先,提出了一种利用无标直边和罗经直接分900角的新方法;第二,证明巴舍罗对毕达哥拉斯定理(c2 = a2 + b2)的第一个证明,包含在900角的新的直接三切线中;最后,从900角的三切线推导出毕达哥拉斯定理。本文采用直接解剖法。最后提出了四点:a)三可分性概念与可构造性概念的区别;B) 900角的三切分是一种全新的、不同的方法;c) Bhaskara对毕达哥拉斯定理的第一个证明,它真正嵌入了900角的三切分和;d)另一种从900角的三切线推导勾股定理的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angle Trisection, Bhaskara’s Proof, and Pythagorean Theorem
This paper deals with 1) angle trisection, 2) Bhaskara’s first proof, and 3) Pythagorean theorem. The purpose of this paper is threefold. First, to show a new, direct method of trisecting the 900 angle using unmarked straight edge and compass; secondly, to show Bhaskara’s first proof of the Pythagorean theorem (c2 = a2 + b2) as embedded in this new, direct trisection of the 900 angle; lastly, to show the derivation of the Pythagorean theorem from this trisection of the 900 angle. This paper employs the direct dissection method. It concludes by presenting four points: a) the concept of trisectability as distinct from concept of constructability; b) the trisection of the 900 angle as really a new, different method; c) Bhaskara’s first proof of the Pythagorean theorem as truly embedded in this trisection of the 900 angle and; d) another way of deriving Pythagorean theorem from this trisection of the 900 angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信