空间位阻诱导脱水促进跨亚纳米通道运输中的阳离子选择性

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2023-06-23 DOI:10.1021/acsnano.3c03028
Zhibin Chen, Chengzhi Hu*, Chenghai Lu, Jingqiu Sun, Yanyan Zhang*, Fuyi Wang and Jiuhui Qu*, 
{"title":"空间位阻诱导脱水促进跨亚纳米通道运输中的阳离子选择性","authors":"Zhibin Chen,&nbsp;Chengzhi Hu*,&nbsp;Chenghai Lu,&nbsp;Jingqiu Sun,&nbsp;Yanyan Zhang*,&nbsp;Fuyi Wang and Jiuhui Qu*,&nbsp;","doi":"10.1021/acsnano.3c03028","DOIUrl":null,"url":null,"abstract":"<p >Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the <i>in situ</i> liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li<sup>+</sup> over other alkaline metal ions, leading to a Li<sup>+</sup>/Rb<sup>+</sup> selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (&gt;1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (~10<sup>4</sup>). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Steric Hindrance-Induced Dehydration Promotes Cation Selectivity in Trans-Subnanochannel Transport\",\"authors\":\"Zhibin Chen,&nbsp;Chengzhi Hu*,&nbsp;Chenghai Lu,&nbsp;Jingqiu Sun,&nbsp;Yanyan Zhang*,&nbsp;Fuyi Wang and Jiuhui Qu*,&nbsp;\",\"doi\":\"10.1021/acsnano.3c03028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the <i>in situ</i> liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li<sup>+</sup> over other alkaline metal ions, leading to a Li<sup>+</sup>/Rb<sup>+</sup> selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (&gt;1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (~10<sup>4</sup>). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.3c03028\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.3c03028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

脱水是离子通过受限纳米通道传输的一种基本现象,但由于缺乏表征技术和合适的孔结构,脱水如何影响离子跨膜选择性尚不清楚。本文采用原位液体飞行时间二次离子质谱(ToF-SIMS)技术结合ZIF-8基膜的均匀亚纳米通道对典型碱金属离子的水化数分布进行了表征,揭示了空间位阻通过中性受限的ZIF-8窗口诱导离子脱水。部分脱水导致的体积减小增加了一价阳离子的孔内流速。脱水导致的最大尺寸变化和最大熵值驱动Li+在其他碱金属离子上快速有效的选择性输运,Li+/Rb+的选择性为5.2。在膜孔入口处的脱水被证明是整个屏障的主要原因,是离子传输的主要因素。较高的水化能(>1500 kJ/mol)阻碍了典型碱土金属离子的脱水和转运,实现了超高的一价/二价阳离子选择性(~104)。这些发现揭示了脱水能垒和基于尺寸的熵垒在跨亚纳米通道离子选择性传输中的关键作用,为设计具有特定孔径的选择性膜以促进所需溶质的脱水提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Steric Hindrance-Induced Dehydration Promotes Cation Selectivity in Trans-Subnanochannel Transport

Steric Hindrance-Induced Dehydration Promotes Cation Selectivity in Trans-Subnanochannel Transport

Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the in situ liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li+ over other alkaline metal ions, leading to a Li+/Rb+ selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (>1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (~104). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信