带有辅助空间的低成本弗雷德金门

Wen‐Qiang Liu, Hai‐Rui Wei, L. Kwek
{"title":"带有辅助空间的低成本弗雷德金门","authors":"Wen‐Qiang Liu, Hai‐Rui Wei, L. Kwek","doi":"10.1103/PhysRevApplied.14.054057","DOIUrl":null,"url":null,"abstract":"Effective quantum information processing is tantamount in part to the minimization the quantum resources needed by quantum logic gates. Here, we propose an optimization of an n-controlled-qubit Fredkin gate with a maximum of 2n+1 two-qubit gates and 2n single-qudit gates by exploiting auxiliary Hilbert spaces. The number of logic gates required improves on earlier results on simulating arbitrary n-qubit Fredkin gates. In particular, the optimal result for one-controlled-qubit Fredkin gate (which requires three qutrit-qubit partial-swap gates) breaks the theoretical nonconstructive lower bound of five two-qubit gates. Furthermore, using an additional spatial-mode degree of freedom, we design a possible architecture to implement a polarization-encoded Fredkin gate with linear optical elements.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Low-Cost Fredkin Gate with Auxiliary Space\",\"authors\":\"Wen‐Qiang Liu, Hai‐Rui Wei, L. Kwek\",\"doi\":\"10.1103/PhysRevApplied.14.054057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective quantum information processing is tantamount in part to the minimization the quantum resources needed by quantum logic gates. Here, we propose an optimization of an n-controlled-qubit Fredkin gate with a maximum of 2n+1 two-qubit gates and 2n single-qudit gates by exploiting auxiliary Hilbert spaces. The number of logic gates required improves on earlier results on simulating arbitrary n-qubit Fredkin gates. In particular, the optimal result for one-controlled-qubit Fredkin gate (which requires three qutrit-qubit partial-swap gates) breaks the theoretical nonconstructive lower bound of five two-qubit gates. Furthermore, using an additional spatial-mode degree of freedom, we design a possible architecture to implement a polarization-encoded Fredkin gate with linear optical elements.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevApplied.14.054057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevApplied.14.054057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

有效的量子信息处理在一定程度上等于将量子逻辑门所需的量子资源最小化。在这里,我们提出了一种利用辅助希尔伯特空间优化n-受控量子比特Fredkin门,该门最多有2n+1个双量子比特门和2n个单量子比特门。所需逻辑门的数量比先前模拟任意n量子位Fredkin门的结果有所改善。特别是,单控制量子位Fredkin门(需要三个量子位部分交换门)的最佳结果打破了五个双量子位门的理论非建设性下界。此外,利用额外的空间模自由度,我们设计了一种可能的结构来实现具有线性光学元件的偏振编码弗雷德金门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Cost Fredkin Gate with Auxiliary Space
Effective quantum information processing is tantamount in part to the minimization the quantum resources needed by quantum logic gates. Here, we propose an optimization of an n-controlled-qubit Fredkin gate with a maximum of 2n+1 two-qubit gates and 2n single-qudit gates by exploiting auxiliary Hilbert spaces. The number of logic gates required improves on earlier results on simulating arbitrary n-qubit Fredkin gates. In particular, the optimal result for one-controlled-qubit Fredkin gate (which requires three qutrit-qubit partial-swap gates) breaks the theoretical nonconstructive lower bound of five two-qubit gates. Furthermore, using an additional spatial-mode degree of freedom, we design a possible architecture to implement a polarization-encoded Fredkin gate with linear optical elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信