基于电化学和流体动力学跨膜机制耦合的连续介质模型的房水分泌理论研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lorenzo Sala, A. Mauri, R. Sacco, D. Messenio, G. Guidoboni, A. Harris
{"title":"基于电化学和流体动力学跨膜机制耦合的连续介质模型的房水分泌理论研究","authors":"Lorenzo Sala, A. Mauri, R. Sacco, D. Messenio, G. Guidoboni, A. Harris","doi":"10.2140/camcos.2019.14.65","DOIUrl":null,"url":null,"abstract":"Intraocular pressure, resulting from the balance of aqueous humor (AH) production and drainage, is the only approved treatable risk factor in glaucoma. AH production is determined by the concurrent function of ionic pumps and aquaporins in the ciliary processes but their individual contribution is difficult to characterize experimentally. In this work, we propose a novel unified modeling and computational framework for the finite element simulation of the role of the main ionic pumps involved in AH secretion, namely, the sodium potassium pump, the calcium-sodium pump, the anion channel and the hydrogenate-sodium pump. The theoretical model is developed at the cellular scale and is based on the coupling between electrochemical and fluid-dynamical transmembrane mechanisms characterized by a novel description of the electric pressure exerted by the ions on the intrachannel fluid that includes electrochemical and osmotic corrections. Considering a realistic geometry of the ionic pumps, the proposed model is demonstrated to correctly predict their functionality as a function of (1) the permanent electric charge density over the channel pump surface; (2) the osmotic gradient coefficient; (3) the stoichiometric ratio between the ionic pump currents enforced at the inlet and outlet sections of the channel. In particular, theoretical predictions of the transepithelial membrane potential for each simulated pump/channel allow us to perform a first significant model comparison with experimental data for monkeys. This is a significant step for future multidisciplinary studies on the action of molecules on AH production.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A theoretical study of aqueous humor secretion based on a continuum model coupling electrochemical and fluid-dynamical transmembrane mechanisms\",\"authors\":\"Lorenzo Sala, A. Mauri, R. Sacco, D. Messenio, G. Guidoboni, A. Harris\",\"doi\":\"10.2140/camcos.2019.14.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intraocular pressure, resulting from the balance of aqueous humor (AH) production and drainage, is the only approved treatable risk factor in glaucoma. AH production is determined by the concurrent function of ionic pumps and aquaporins in the ciliary processes but their individual contribution is difficult to characterize experimentally. In this work, we propose a novel unified modeling and computational framework for the finite element simulation of the role of the main ionic pumps involved in AH secretion, namely, the sodium potassium pump, the calcium-sodium pump, the anion channel and the hydrogenate-sodium pump. The theoretical model is developed at the cellular scale and is based on the coupling between electrochemical and fluid-dynamical transmembrane mechanisms characterized by a novel description of the electric pressure exerted by the ions on the intrachannel fluid that includes electrochemical and osmotic corrections. Considering a realistic geometry of the ionic pumps, the proposed model is demonstrated to correctly predict their functionality as a function of (1) the permanent electric charge density over the channel pump surface; (2) the osmotic gradient coefficient; (3) the stoichiometric ratio between the ionic pump currents enforced at the inlet and outlet sections of the channel. In particular, theoretical predictions of the transepithelial membrane potential for each simulated pump/channel allow us to perform a first significant model comparison with experimental data for monkeys. This is a significant step for future multidisciplinary studies on the action of molecules on AH production.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2019.14.65\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2019.14.65","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

眼内压是由房水生成和排出平衡引起的,是青光眼唯一被批准可治疗的危险因素。在纤毛过程中,离子泵和水通道蛋白的共同作用决定了酸碱的产生,但它们各自的作用很难用实验来表征。在这项工作中,我们提出了一种新的统一建模和计算框架,用于有限元模拟参与AH分泌的主要离子泵的作用,即钠钾泵,钙钠泵,阴离子通道和氢钠泵。该理论模型是在细胞尺度上建立的,基于电化学和流体动力学跨膜机制之间的耦合,其特点是对离子施加在通道内流体上的电压力进行了新颖的描述,包括电化学和渗透校正。考虑到离子泵的实际几何形状,所提出的模型被证明可以正确地预测它们的功能,作为(1)通道泵表面上的永久电荷密度的函数;(2)渗透梯度系数;(3)通道入口段和出口段施加的离子泵电流的化学计量比。特别是,每个模拟泵/通道的经上皮膜电位的理论预测使我们能够与猴子的实验数据进行第一次重要的模型比较。这是未来多学科研究分子对AH产生作用的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theoretical study of aqueous humor secretion based on a continuum model coupling electrochemical and fluid-dynamical transmembrane mechanisms
Intraocular pressure, resulting from the balance of aqueous humor (AH) production and drainage, is the only approved treatable risk factor in glaucoma. AH production is determined by the concurrent function of ionic pumps and aquaporins in the ciliary processes but their individual contribution is difficult to characterize experimentally. In this work, we propose a novel unified modeling and computational framework for the finite element simulation of the role of the main ionic pumps involved in AH secretion, namely, the sodium potassium pump, the calcium-sodium pump, the anion channel and the hydrogenate-sodium pump. The theoretical model is developed at the cellular scale and is based on the coupling between electrochemical and fluid-dynamical transmembrane mechanisms characterized by a novel description of the electric pressure exerted by the ions on the intrachannel fluid that includes electrochemical and osmotic corrections. Considering a realistic geometry of the ionic pumps, the proposed model is demonstrated to correctly predict their functionality as a function of (1) the permanent electric charge density over the channel pump surface; (2) the osmotic gradient coefficient; (3) the stoichiometric ratio between the ionic pump currents enforced at the inlet and outlet sections of the channel. In particular, theoretical predictions of the transepithelial membrane potential for each simulated pump/channel allow us to perform a first significant model comparison with experimental data for monkeys. This is a significant step for future multidisciplinary studies on the action of molecules on AH production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信