Yuta Tsubonouchi, Eman A. Mohamed, Zaki N. Zahran, M. Yagi
{"title":"钌(II)水基配合物的光异构化和水氧化催化机理","authors":"Yuta Tsubonouchi, Eman A. Mohamed, Zaki N. Zahran, M. Yagi","doi":"10.5772/intechopen.99730","DOIUrl":null,"url":null,"abstract":"Polypyridyl ruthenium(II) complexes have been widely researched as promising functional molecules. We have found unique photoisomerization reactions of polypyridyl ruthenium(II) aquo complexes. Recently we have attempted to provide insight into the mechanism of the photoisomerization of the complexes and distinguish between the distal−/proximal-isomers in their physicochemical properties and functions. Moreover, polypyridyl ruthenium(II) aquo complexes have been intensively studied as active water oxidation catalysts (WOCs) which are indispensable for artificial photosynthesis. The catalytic aspect and mechanism of water oxidation by the distal-/proximal-isomers of polypyridyl ruthenium(II) aquo complexes have been investigated to provide the guided thought to develop more efficient molecular catalysts for water oxidation. The recent progress on the photoisomerization and water oxidation of polypyridyl ruthenium(II) aquo complexes in our group are reviewed to understand the properties and functions of ruthenium complexes.","PeriodicalId":21336,"journal":{"name":"Ruthenium - an Element Loved by Researchers [Working Title]","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Photoisomerization and Water Oxidation Catalysis of Ruthenium(II) Aquo Complexes\",\"authors\":\"Yuta Tsubonouchi, Eman A. Mohamed, Zaki N. Zahran, M. Yagi\",\"doi\":\"10.5772/intechopen.99730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polypyridyl ruthenium(II) complexes have been widely researched as promising functional molecules. We have found unique photoisomerization reactions of polypyridyl ruthenium(II) aquo complexes. Recently we have attempted to provide insight into the mechanism of the photoisomerization of the complexes and distinguish between the distal−/proximal-isomers in their physicochemical properties and functions. Moreover, polypyridyl ruthenium(II) aquo complexes have been intensively studied as active water oxidation catalysts (WOCs) which are indispensable for artificial photosynthesis. The catalytic aspect and mechanism of water oxidation by the distal-/proximal-isomers of polypyridyl ruthenium(II) aquo complexes have been investigated to provide the guided thought to develop more efficient molecular catalysts for water oxidation. The recent progress on the photoisomerization and water oxidation of polypyridyl ruthenium(II) aquo complexes in our group are reviewed to understand the properties and functions of ruthenium complexes.\",\"PeriodicalId\":21336,\"journal\":{\"name\":\"Ruthenium - an Element Loved by Researchers [Working Title]\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ruthenium - an Element Loved by Researchers [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.99730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ruthenium - an Element Loved by Researchers [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.99730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanisms of Photoisomerization and Water Oxidation Catalysis of Ruthenium(II) Aquo Complexes
Polypyridyl ruthenium(II) complexes have been widely researched as promising functional molecules. We have found unique photoisomerization reactions of polypyridyl ruthenium(II) aquo complexes. Recently we have attempted to provide insight into the mechanism of the photoisomerization of the complexes and distinguish between the distal−/proximal-isomers in their physicochemical properties and functions. Moreover, polypyridyl ruthenium(II) aquo complexes have been intensively studied as active water oxidation catalysts (WOCs) which are indispensable for artificial photosynthesis. The catalytic aspect and mechanism of water oxidation by the distal-/proximal-isomers of polypyridyl ruthenium(II) aquo complexes have been investigated to provide the guided thought to develop more efficient molecular catalysts for water oxidation. The recent progress on the photoisomerization and water oxidation of polypyridyl ruthenium(II) aquo complexes in our group are reviewed to understand the properties and functions of ruthenium complexes.