{"title":"多元化学计量学方法预测葡萄中160种农药和25种环境有机污染物的二维气相色谱-飞行时间质谱保留时间","authors":"I. Amini, K. Pal, S. Esmaeilpoor, A. Abdelkarim","doi":"10.29088/SAMI/AJCA.2018.3.1231","DOIUrl":null,"url":null,"abstract":"A quantitative structure–retention relation (QSRR) study was conducted on the retention times of 160 pesticides and 25 environmental organic pollutants in wine and grape. The genetic algorithm was used as descriptor selection and model development method. Modeling of the relationship between selected molecular descriptors and retention time was achieved by linear (partial least square; PLS) and nonlinear (kernel PLS: KPLS and Levenberg-Marquardt artificial neural network; L-M ANN) methods. The QSRR models were validated by cross-validation as well as application of the models to predict the retention of external set compounds, which did not have contribution in model development steps. Linear and nonlinear methods resulted in accurate prediction whereas more accurate results were obtained by L-M ANN model. The best model obtained from L-M ANN showed a good R2 value (determination coefficient between observed and predicted values) for all compounds, which was superior to those of other statistical models. This is the first research on the QSRR of the compounds in wine and grape against the retention time using the GA-KPLS and L-M ANN.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Prediction of two-dimensional gas chromatography time-of-flight mass spectrometry retention times of 160 pesticides and 25 environmental organic pollutants in grape by multivariate chemometrics methods\",\"authors\":\"I. Amini, K. Pal, S. Esmaeilpoor, A. Abdelkarim\",\"doi\":\"10.29088/SAMI/AJCA.2018.3.1231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantitative structure–retention relation (QSRR) study was conducted on the retention times of 160 pesticides and 25 environmental organic pollutants in wine and grape. The genetic algorithm was used as descriptor selection and model development method. Modeling of the relationship between selected molecular descriptors and retention time was achieved by linear (partial least square; PLS) and nonlinear (kernel PLS: KPLS and Levenberg-Marquardt artificial neural network; L-M ANN) methods. The QSRR models were validated by cross-validation as well as application of the models to predict the retention of external set compounds, which did not have contribution in model development steps. Linear and nonlinear methods resulted in accurate prediction whereas more accurate results were obtained by L-M ANN model. The best model obtained from L-M ANN showed a good R2 value (determination coefficient between observed and predicted values) for all compounds, which was superior to those of other statistical models. This is the first research on the QSRR of the compounds in wine and grape against the retention time using the GA-KPLS and L-M ANN.\",\"PeriodicalId\":7207,\"journal\":{\"name\":\"Advanced Journal of Chemistry-Section A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Journal of Chemistry-Section A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29088/SAMI/AJCA.2018.3.1231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Journal of Chemistry-Section A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29088/SAMI/AJCA.2018.3.1231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of two-dimensional gas chromatography time-of-flight mass spectrometry retention times of 160 pesticides and 25 environmental organic pollutants in grape by multivariate chemometrics methods
A quantitative structure–retention relation (QSRR) study was conducted on the retention times of 160 pesticides and 25 environmental organic pollutants in wine and grape. The genetic algorithm was used as descriptor selection and model development method. Modeling of the relationship between selected molecular descriptors and retention time was achieved by linear (partial least square; PLS) and nonlinear (kernel PLS: KPLS and Levenberg-Marquardt artificial neural network; L-M ANN) methods. The QSRR models were validated by cross-validation as well as application of the models to predict the retention of external set compounds, which did not have contribution in model development steps. Linear and nonlinear methods resulted in accurate prediction whereas more accurate results were obtained by L-M ANN model. The best model obtained from L-M ANN showed a good R2 value (determination coefficient between observed and predicted values) for all compounds, which was superior to those of other statistical models. This is the first research on the QSRR of the compounds in wine and grape against the retention time using the GA-KPLS and L-M ANN.