C. Nordquist, D. Leonhardt, J. Custer, T. Jordan, S. Wolfley, S. Scott, Molly N. Sing, M. Cich, C. Rodenbeck
{"title":"二氧化钒金属绝缘体过渡射频限制器的功率处理","authors":"C. Nordquist, D. Leonhardt, J. Custer, T. Jordan, S. Wolfley, S. Scott, Molly N. Sing, M. Cich, C. Rodenbeck","doi":"10.1109/IMWS-AMP.2018.8457150","DOIUrl":null,"url":null,"abstract":"Maximum power handling, spike leakage, and failure mechanisms have been characterized for limiters based on the thermally triggered metal-insulator transition of vanadium dioxide. These attributes are determined by properties of the metal-insulator material such as on/off resistance ratio, geometric properties that determine the film resistance and the currentcarrying capability of the device, and thermal properties such as heatsinking and thermal coupling. A limiter with greater than 10 GHz of bandwidth demonstrated 0.5 dB loss, 27 dBm threshold power, 8 Watts blocking power, and 0.4 mJ spike leakage at frequencies near 2 GHz. A separate limiter optimized for high power blocked over 60 Watts of incident power with leakage less than 25 dBm after triggering. The power handling demonstrates promise for these limiter devices, and device optimization presents opportunities for additional improvement in spike leakage, response speed, and reliability.","PeriodicalId":6605,"journal":{"name":"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","volume":"31 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Handling of Vanadium Dioxide Metal-Insulator Transition RF Limiters\",\"authors\":\"C. Nordquist, D. Leonhardt, J. Custer, T. Jordan, S. Wolfley, S. Scott, Molly N. Sing, M. Cich, C. Rodenbeck\",\"doi\":\"10.1109/IMWS-AMP.2018.8457150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum power handling, spike leakage, and failure mechanisms have been characterized for limiters based on the thermally triggered metal-insulator transition of vanadium dioxide. These attributes are determined by properties of the metal-insulator material such as on/off resistance ratio, geometric properties that determine the film resistance and the currentcarrying capability of the device, and thermal properties such as heatsinking and thermal coupling. A limiter with greater than 10 GHz of bandwidth demonstrated 0.5 dB loss, 27 dBm threshold power, 8 Watts blocking power, and 0.4 mJ spike leakage at frequencies near 2 GHz. A separate limiter optimized for high power blocked over 60 Watts of incident power with leakage less than 25 dBm after triggering. The power handling demonstrates promise for these limiter devices, and device optimization presents opportunities for additional improvement in spike leakage, response speed, and reliability.\",\"PeriodicalId\":6605,\"journal\":{\"name\":\"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"volume\":\"31 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-AMP.2018.8457150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-AMP.2018.8457150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power Handling of Vanadium Dioxide Metal-Insulator Transition RF Limiters
Maximum power handling, spike leakage, and failure mechanisms have been characterized for limiters based on the thermally triggered metal-insulator transition of vanadium dioxide. These attributes are determined by properties of the metal-insulator material such as on/off resistance ratio, geometric properties that determine the film resistance and the currentcarrying capability of the device, and thermal properties such as heatsinking and thermal coupling. A limiter with greater than 10 GHz of bandwidth demonstrated 0.5 dB loss, 27 dBm threshold power, 8 Watts blocking power, and 0.4 mJ spike leakage at frequencies near 2 GHz. A separate limiter optimized for high power blocked over 60 Watts of incident power with leakage less than 25 dBm after triggering. The power handling demonstrates promise for these limiter devices, and device optimization presents opportunities for additional improvement in spike leakage, response speed, and reliability.