同步加速器研究数据的高级硅纳米手柄功能

Ю. Ю. Турищев, А. Л. Терехов, А. И. Тонких, Денис Васильевич Захаров, В. Анисимов, О А Чувенкова, Ю А Юраков, В. Паринова, Д. А. Коюда, Б. В. Сеньковский
{"title":"同步加速器研究数据的高级硅纳米手柄功能","authors":"Ю. Ю. Турищев, А. Л. Терехов, А. И. Тонких, Денис Васильевич Захаров, В. Анисимов, О А Чувенкова, Ю А Юраков, В. Паринова, Д. А. Коюда, Б. В. Сеньковский","doi":"10.34077/silicon2022-75","DOIUrl":null,"url":null,"abstract":"Semiconductor solid solutions draw considerable attention of modern science and technology. Such structures open prospects to gradually change electronic and optical characteristics of semiconductor materials. A particular task concerns Si1-xSnx solid solutions, which can allow to control optical properties in the near-IR region, as well as to adjust charge carriers’ generation, recombination and transfer processes on their basis. These alloys would allow to create new optoelectronic devices, e. g., lasers, and cost-efficient thermoelectric converters. However, the substantial difference of Si and Sn lattice constants (approximately 17 at%) and a low mutual solubility of the elements constrains the creation of homogenous Si-Sn structures. This limitation can be overcome in non-equilibrium conditions, е. g., by using molecular beam epitaxy (MBE). The aim of this work is the study of MBE-grown strained Si1-xSnx solid solutions’ electronic structure by means of non-destructive techniques of X-ray spectroscopy: XANES (X-ray Absorption NearEdge Structure) and USXES (Ultra-Soft X-ray Emission Spectroscopy); and to analyze the chemical bonds in the resulting materials with the XPS (X-ray photoelectron spectroscopy) technique. These methods are efficient for investigations of local electronic structure of near-surface thin layers, thanks to high sensitivity to local environment of atoms under study, and due to usage of synchrotron radiation sources allowing to achieve high radiation intensity and energy resolution. The results of this work allow to confirm the formation of Si0,92 solid solutions having a lower Sn0,08 band, than Si, and smoothed density of states due to presence of large tin atoms in the silicon lattice. It is observed that the formation of solid solutions is accompanied by changes of Si and Sn atoms’ bond energy. If the sample is covered by a 10 nm thick capping Si layer, this layer is characterized by a bulk-like single crystalline Si structure and negligible strain level. Therefore, the absence of notable elastic strain in the upper capping Si layer manifests the pseudomorphic nature of the em-","PeriodicalId":32503,"journal":{"name":"Sel''skokhoziaistvennye mashiny i tekhnologii","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Функционализация развитой поверхности кремниевых наноструктур по данным синхротронных исследований\",\"authors\":\"Ю. Ю. Турищев, А. Л. Терехов, А. И. Тонких, Денис Васильевич Захаров, В. Анисимов, О А Чувенкова, Ю А Юраков, В. Паринова, Д. А. Коюда, Б. В. Сеньковский\",\"doi\":\"10.34077/silicon2022-75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor solid solutions draw considerable attention of modern science and technology. Such structures open prospects to gradually change electronic and optical characteristics of semiconductor materials. A particular task concerns Si1-xSnx solid solutions, which can allow to control optical properties in the near-IR region, as well as to adjust charge carriers’ generation, recombination and transfer processes on their basis. These alloys would allow to create new optoelectronic devices, e. g., lasers, and cost-efficient thermoelectric converters. However, the substantial difference of Si and Sn lattice constants (approximately 17 at%) and a low mutual solubility of the elements constrains the creation of homogenous Si-Sn structures. This limitation can be overcome in non-equilibrium conditions, е. g., by using molecular beam epitaxy (MBE). The aim of this work is the study of MBE-grown strained Si1-xSnx solid solutions’ electronic structure by means of non-destructive techniques of X-ray spectroscopy: XANES (X-ray Absorption NearEdge Structure) and USXES (Ultra-Soft X-ray Emission Spectroscopy); and to analyze the chemical bonds in the resulting materials with the XPS (X-ray photoelectron spectroscopy) technique. These methods are efficient for investigations of local electronic structure of near-surface thin layers, thanks to high sensitivity to local environment of atoms under study, and due to usage of synchrotron radiation sources allowing to achieve high radiation intensity and energy resolution. The results of this work allow to confirm the formation of Si0,92 solid solutions having a lower Sn0,08 band, than Si, and smoothed density of states due to presence of large tin atoms in the silicon lattice. It is observed that the formation of solid solutions is accompanied by changes of Si and Sn atoms’ bond energy. If the sample is covered by a 10 nm thick capping Si layer, this layer is characterized by a bulk-like single crystalline Si structure and negligible strain level. Therefore, the absence of notable elastic strain in the upper capping Si layer manifests the pseudomorphic nature of the em-\",\"PeriodicalId\":32503,\"journal\":{\"name\":\"Sel''skokhoziaistvennye mashiny i tekhnologii\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sel''skokhoziaistvennye mashiny i tekhnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34077/silicon2022-75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sel''skokhoziaistvennye mashiny i tekhnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34077/silicon2022-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半导体固溶体是现代科学技术的重要组成部分。这种结构为逐渐改变半导体材料的电子和光学特性开辟了前景。一项特别的任务涉及Si1-xSnx固体解决方案,它可以控制近红外区域的光学特性,以及在其基础上调整载流子的产生、重组和转移过程。这些合金可以用来制造新的光电器件,例如激光器和低成本的热电转换器。然而,Si和Sn晶格常数的巨大差异(约为17 at%)和元素的低相互溶解度限制了Si-Sn均质结构的产生。这种限制在非平衡条件下是可以克服的。例如,利用分子束外延(MBE)。本工作的目的是研究mbe生长应变Si1-xSnx固溶体的电子结构,采用非破坏性的x射线光谱学技术:XANES (x射线吸收近边缘结构)和USXES(超软x射线发射光谱);并用XPS (x射线光电子能谱)技术分析所得材料中的化学键。这些方法对于近表面薄层的局部电子结构的研究是有效的,因为它们对被研究原子的局部环境具有很高的灵敏度,并且由于使用了同步辐射源,可以实现高辐射强度和能量分辨率。这项工作的结果证实了si92固溶体的形成,其sn008波段比Si低,并且由于硅晶格中存在大的锡原子而使态密度平滑。观察到,固溶体的形成伴随着Si和Sn原子键能的变化。如果样品被10 nm厚的Si盖层覆盖,该层的特征是块状单晶Si结构,应变水平可以忽略不计。因此,在上盖层中没有明显的弹性应变,表明em-的伪晶性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Функционализация развитой поверхности кремниевых наноструктур по данным синхротронных исследований
Semiconductor solid solutions draw considerable attention of modern science and technology. Such structures open prospects to gradually change electronic and optical characteristics of semiconductor materials. A particular task concerns Si1-xSnx solid solutions, which can allow to control optical properties in the near-IR region, as well as to adjust charge carriers’ generation, recombination and transfer processes on their basis. These alloys would allow to create new optoelectronic devices, e. g., lasers, and cost-efficient thermoelectric converters. However, the substantial difference of Si and Sn lattice constants (approximately 17 at%) and a low mutual solubility of the elements constrains the creation of homogenous Si-Sn structures. This limitation can be overcome in non-equilibrium conditions, е. g., by using molecular beam epitaxy (MBE). The aim of this work is the study of MBE-grown strained Si1-xSnx solid solutions’ electronic structure by means of non-destructive techniques of X-ray spectroscopy: XANES (X-ray Absorption NearEdge Structure) and USXES (Ultra-Soft X-ray Emission Spectroscopy); and to analyze the chemical bonds in the resulting materials with the XPS (X-ray photoelectron spectroscopy) technique. These methods are efficient for investigations of local electronic structure of near-surface thin layers, thanks to high sensitivity to local environment of atoms under study, and due to usage of synchrotron radiation sources allowing to achieve high radiation intensity and energy resolution. The results of this work allow to confirm the formation of Si0,92 solid solutions having a lower Sn0,08 band, than Si, and smoothed density of states due to presence of large tin atoms in the silicon lattice. It is observed that the formation of solid solutions is accompanied by changes of Si and Sn atoms’ bond energy. If the sample is covered by a 10 nm thick capping Si layer, this layer is characterized by a bulk-like single crystalline Si structure and negligible strain level. Therefore, the absence of notable elastic strain in the upper capping Si layer manifests the pseudomorphic nature of the em-
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
35
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信