65纳米CMOS植入器件的双频无线电源和双向数据链路

V. Talla, V. Ranganathan, Brody J. Mahoney, Joshua R. Smith
{"title":"65纳米CMOS植入器件的双频无线电源和双向数据链路","authors":"V. Talla, V. Ranganathan, Brody J. Mahoney, Joshua R. Smith","doi":"10.1109/ISCAS.2016.7527326","DOIUrl":null,"url":null,"abstract":"Implantable neural recording and stimulation devices hold great promise in monitoring and treatment of neurological disorders, limb reanimation and, development of brain-computer interfaces among other applications. However, transcutaneous wires limit the lifetime of such devices and there is a need for self-contained fully implantable solutions. In this work, we propose a novel dual-frequency approach for simultaneous wireless power transfer and low-power communication for small form factor fully implantable neural devices. We deliver wireless power using efficient magnetically coupled resonators operating at 13.56MHz and communicate using ultra-low power backscatter communication at 915 MHz. We leverage the frequency separation to combine wireless power and communication resonators with minimal interference using a novel concentric design, which meets the stringent size restrictions. We implement the wireless power receiver and communication front end of the implanted device in 65 nm CMOS and demonstrate 25 mW power delivery and 6 Mbps communication link.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"1 1","pages":"658-661"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dual band wireless power and bi-directional data link for implanted devices in 65 nm CMOS\",\"authors\":\"V. Talla, V. Ranganathan, Brody J. Mahoney, Joshua R. Smith\",\"doi\":\"10.1109/ISCAS.2016.7527326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implantable neural recording and stimulation devices hold great promise in monitoring and treatment of neurological disorders, limb reanimation and, development of brain-computer interfaces among other applications. However, transcutaneous wires limit the lifetime of such devices and there is a need for self-contained fully implantable solutions. In this work, we propose a novel dual-frequency approach for simultaneous wireless power transfer and low-power communication for small form factor fully implantable neural devices. We deliver wireless power using efficient magnetically coupled resonators operating at 13.56MHz and communicate using ultra-low power backscatter communication at 915 MHz. We leverage the frequency separation to combine wireless power and communication resonators with minimal interference using a novel concentric design, which meets the stringent size restrictions. We implement the wireless power receiver and communication front end of the implanted device in 65 nm CMOS and demonstrate 25 mW power delivery and 6 Mbps communication link.\",\"PeriodicalId\":6546,\"journal\":{\"name\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"1 1\",\"pages\":\"658-661\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2016.7527326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

植入式神经记录和刺激装置在监测和治疗神经系统疾病、肢体再生以及开发脑机接口等应用方面具有很大的前景。然而,经皮导线限制了这种装置的使用寿命,并且需要自给自足的完全植入式解决方案。在这项工作中,我们提出了一种新的双频方法,用于小尺寸全植入式神经装置的同时无线电力传输和低功耗通信。我们使用工作频率为13.56MHz的高效磁耦合谐振器提供无线电源,并使用超低功耗915 MHz的反向散射通信进行通信。我们利用频率分离来结合无线电源和通信谐振器,使用新颖的同心设计,以最小的干扰,满足严格的尺寸限制。我们在65nm CMOS中实现了无线电源接收器和植入器件的通信前端,并演示了25mw的功率输出和6mbps的通信链路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual band wireless power and bi-directional data link for implanted devices in 65 nm CMOS
Implantable neural recording and stimulation devices hold great promise in monitoring and treatment of neurological disorders, limb reanimation and, development of brain-computer interfaces among other applications. However, transcutaneous wires limit the lifetime of such devices and there is a need for self-contained fully implantable solutions. In this work, we propose a novel dual-frequency approach for simultaneous wireless power transfer and low-power communication for small form factor fully implantable neural devices. We deliver wireless power using efficient magnetically coupled resonators operating at 13.56MHz and communicate using ultra-low power backscatter communication at 915 MHz. We leverage the frequency separation to combine wireless power and communication resonators with minimal interference using a novel concentric design, which meets the stringent size restrictions. We implement the wireless power receiver and communication front end of the implanted device in 65 nm CMOS and demonstrate 25 mW power delivery and 6 Mbps communication link.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信