J. Nogueira, Igor Franca Pereira, P. Amaral, C. R. Miranda, J. Meneghini, Thiago Lopes
{"title":"CO2电还原电化学反应器的开发——巴西CO2电化学装置的可行性","authors":"J. Nogueira, Igor Franca Pereira, P. Amaral, C. R. Miranda, J. Meneghini, Thiago Lopes","doi":"10.1088/2516-1083/ac8865","DOIUrl":null,"url":null,"abstract":"Our global economy based on burning fossil fuels reached a turning point in the 2020s as problems arising from climate change are becoming increasingly evident. An important strategy to decrease anthropogenic CO2 emission relies on carbon capture and storage (CCS). However, the challenges associated with long-term storage of CO2 in the gas phase highlight the need for a viable Chemical Fixation of CO2. In this scenario, electrochemistry gains prominence since electricity from renewable sources can provide the electrons needed for CO2 electroreduction. The main drawback is the high stability of CO2, the most oxidized form of carbon. Our intention in this Perspective is to give a concise overview of CO2 electroreduction, focusing on why working in the gas phase may help overcome mass transport limitations due to the low solubility of CO2 and how the chemical environment can affect selectivity and activity. We also explore a carbon-emission analysis applied to a CO2 electrochemical system. To do so, we assumed a Brazilian scenario, that is, the carbon footprint associated with electricity generation in the country. Since Brazil relies on more renewable energy sources, an electrochemical reactor that converts CO2 to oxalate with a conversion efficiency (CE) of 20% is enough to result in CO2 abatement, that is, an oxalate production with a negative carbon footprint. Compared with the United States of America, such a system would need to operate at higher CE, 50%, to produce similar results. These results evidence how intricate the implementation of an electrochemical plant is with the carbon footprint of the electricity source.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"9 1","pages":""},"PeriodicalIF":32.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of electrochemical reactors for CO2 electroreduction—the viability of an electrochemical CO2 plant in Brazil\",\"authors\":\"J. Nogueira, Igor Franca Pereira, P. Amaral, C. R. Miranda, J. Meneghini, Thiago Lopes\",\"doi\":\"10.1088/2516-1083/ac8865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our global economy based on burning fossil fuels reached a turning point in the 2020s as problems arising from climate change are becoming increasingly evident. An important strategy to decrease anthropogenic CO2 emission relies on carbon capture and storage (CCS). However, the challenges associated with long-term storage of CO2 in the gas phase highlight the need for a viable Chemical Fixation of CO2. In this scenario, electrochemistry gains prominence since electricity from renewable sources can provide the electrons needed for CO2 electroreduction. The main drawback is the high stability of CO2, the most oxidized form of carbon. Our intention in this Perspective is to give a concise overview of CO2 electroreduction, focusing on why working in the gas phase may help overcome mass transport limitations due to the low solubility of CO2 and how the chemical environment can affect selectivity and activity. We also explore a carbon-emission analysis applied to a CO2 electrochemical system. To do so, we assumed a Brazilian scenario, that is, the carbon footprint associated with electricity generation in the country. Since Brazil relies on more renewable energy sources, an electrochemical reactor that converts CO2 to oxalate with a conversion efficiency (CE) of 20% is enough to result in CO2 abatement, that is, an oxalate production with a negative carbon footprint. Compared with the United States of America, such a system would need to operate at higher CE, 50%, to produce similar results. These results evidence how intricate the implementation of an electrochemical plant is with the carbon footprint of the electricity source.\",\"PeriodicalId\":410,\"journal\":{\"name\":\"Progress in Energy and Combustion Science\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":32.0000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy and Combustion Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1083/ac8865\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2516-1083/ac8865","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Development of electrochemical reactors for CO2 electroreduction—the viability of an electrochemical CO2 plant in Brazil
Our global economy based on burning fossil fuels reached a turning point in the 2020s as problems arising from climate change are becoming increasingly evident. An important strategy to decrease anthropogenic CO2 emission relies on carbon capture and storage (CCS). However, the challenges associated with long-term storage of CO2 in the gas phase highlight the need for a viable Chemical Fixation of CO2. In this scenario, electrochemistry gains prominence since electricity from renewable sources can provide the electrons needed for CO2 electroreduction. The main drawback is the high stability of CO2, the most oxidized form of carbon. Our intention in this Perspective is to give a concise overview of CO2 electroreduction, focusing on why working in the gas phase may help overcome mass transport limitations due to the low solubility of CO2 and how the chemical environment can affect selectivity and activity. We also explore a carbon-emission analysis applied to a CO2 electrochemical system. To do so, we assumed a Brazilian scenario, that is, the carbon footprint associated with electricity generation in the country. Since Brazil relies on more renewable energy sources, an electrochemical reactor that converts CO2 to oxalate with a conversion efficiency (CE) of 20% is enough to result in CO2 abatement, that is, an oxalate production with a negative carbon footprint. Compared with the United States of America, such a system would need to operate at higher CE, 50%, to produce similar results. These results evidence how intricate the implementation of an electrochemical plant is with the carbon footprint of the electricity source.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.