{"title":"月球灯塔:纤维素在人居环境建设中应用的安全和心理安慰灯塔","authors":"M. Lipińska","doi":"10.59332/jbis-076-02-0046","DOIUrl":null,"url":null,"abstract":"The harmful cosmic and solar radiation is the major challenge in constructing surface habitats on the Moon. Common solutions for protecting astronauts are to cover the base with a thick layer of regolith or place the habitat underground, in lava tubes. However, these approaches sacrifice the psychological well-being of astronauts by completely cutting off their connection to the outside environment. Therefore, the study was motivated by the need to develop a system of protection against radiation for a surface lunar base that would allow for the introduction of sunlight into the habitat. The objective was to discover a technical solution that would allow greater flexibility in designing the base shell structure, provide a translucent membrane, and guarantee the safety of astronauts. This paper discusses an approach to constructing lunar habitable structures based on soil reinforcement principles and biotechnology. The nano-cellulose membranes, grown in situ, are proposed as passive radiation shielding. Nano-cellulose is a light solid substance with exceptional strength and radiation protection characteristics. After certain processes, it becomes translucent, which is a big asset when considering the introduction of natural light to the habitat. Combined with lunar regolith, cellulose membranes form a composite system enabling the construction of stable vertical surface structures while minimizing material use and habitat footprint. Keywords: Space Architecture, Lunar Base, Radiation Protection, Biotechnology, Nano-cellulose","PeriodicalId":54906,"journal":{"name":"Jbis-Journal of the British Interplanetary Society","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Lunar Lighthouse: a Beacon of Safety and Psychological Comfort through Cellulose Application in Habitat Construction\",\"authors\":\"M. Lipińska\",\"doi\":\"10.59332/jbis-076-02-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The harmful cosmic and solar radiation is the major challenge in constructing surface habitats on the Moon. Common solutions for protecting astronauts are to cover the base with a thick layer of regolith or place the habitat underground, in lava tubes. However, these approaches sacrifice the psychological well-being of astronauts by completely cutting off their connection to the outside environment. Therefore, the study was motivated by the need to develop a system of protection against radiation for a surface lunar base that would allow for the introduction of sunlight into the habitat. The objective was to discover a technical solution that would allow greater flexibility in designing the base shell structure, provide a translucent membrane, and guarantee the safety of astronauts. This paper discusses an approach to constructing lunar habitable structures based on soil reinforcement principles and biotechnology. The nano-cellulose membranes, grown in situ, are proposed as passive radiation shielding. Nano-cellulose is a light solid substance with exceptional strength and radiation protection characteristics. After certain processes, it becomes translucent, which is a big asset when considering the introduction of natural light to the habitat. Combined with lunar regolith, cellulose membranes form a composite system enabling the construction of stable vertical surface structures while minimizing material use and habitat footprint. Keywords: Space Architecture, Lunar Base, Radiation Protection, Biotechnology, Nano-cellulose\",\"PeriodicalId\":54906,\"journal\":{\"name\":\"Jbis-Journal of the British Interplanetary Society\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jbis-Journal of the British Interplanetary Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59332/jbis-076-02-0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jbis-Journal of the British Interplanetary Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59332/jbis-076-02-0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
The Lunar Lighthouse: a Beacon of Safety and Psychological Comfort through Cellulose Application in Habitat Construction
The harmful cosmic and solar radiation is the major challenge in constructing surface habitats on the Moon. Common solutions for protecting astronauts are to cover the base with a thick layer of regolith or place the habitat underground, in lava tubes. However, these approaches sacrifice the psychological well-being of astronauts by completely cutting off their connection to the outside environment. Therefore, the study was motivated by the need to develop a system of protection against radiation for a surface lunar base that would allow for the introduction of sunlight into the habitat. The objective was to discover a technical solution that would allow greater flexibility in designing the base shell structure, provide a translucent membrane, and guarantee the safety of astronauts. This paper discusses an approach to constructing lunar habitable structures based on soil reinforcement principles and biotechnology. The nano-cellulose membranes, grown in situ, are proposed as passive radiation shielding. Nano-cellulose is a light solid substance with exceptional strength and radiation protection characteristics. After certain processes, it becomes translucent, which is a big asset when considering the introduction of natural light to the habitat. Combined with lunar regolith, cellulose membranes form a composite system enabling the construction of stable vertical surface structures while minimizing material use and habitat footprint. Keywords: Space Architecture, Lunar Base, Radiation Protection, Biotechnology, Nano-cellulose
期刊介绍:
The Journal of the British Interplanetary Society (JBIS) is a technical scientific journal, first published in 1934. JBIS is concerned with space science and space technology. The journal is edited and published monthly in the United Kingdom by the British Interplanetary Society.
Although the journal maintains high standards of rigorous peer review, the same with other journals in astronautics, it stands out as a journal willing to allow measured speculation on topics deemed to be at the frontiers of our knowledge in science. The boldness of journal in this respect, marks it out as containing often speculative but visionary papers on the subject of astronautics.