{"title":"基于深度学习的地下水储量变化建模","authors":"Mohd anul haq, Abdul Khadar Jilani, P. Prabu","doi":"10.32604/cmc.2022.020495","DOIUrl":null,"url":null,"abstract":": The understanding of water resource changes and a proper projec-tion of their future availability are necessary elements of sustainable water planning. Monitoring GWS change and future water resource availability are crucial, especially under changing climatic conditions. Traditional methods for in situ groundwater well measurement are a significant challenge due to data unavailability. The present investigation utilized the Long Short Term Memory (LSTM) networks to monitor and forecast Terrestrial Water Storage Change (TWSC) and Ground Water Storage Change (GWSC) based on Gravity Recovery and Climate Experiment (GRACE) datasets from 2003– 2025 for five basins of Saudi Arabia. An attempt has been made to assess the effects of rainfall, water used, and net budget modeling of groundwater. Analysis of GRACE-derived TWSC and GWSC estimates indicates that all five basins show depletion of water from 2003–2020 with a rate ranging from − 5.88 ± 1.2 mm/year to − 14.12 ± 1.2 mm/year and − 3.5 ± 1.5 to − 10.7 ± 1.5, respectively. Forecasting based on the developed LSTM model indicates that the investigated basins are likely to experience serious water depletion at rates ranging from − 7.78 ± 1.2 to − 15.6 ± 1.2 for TWSC and − 4.97 ± 1.5 to − 12.21 ± 1.5 for GWSC from 2020–2025. An interesting observation was a minor increase in rainfall during the study period for three basins.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Deep Learning Based Modeling of Groundwater Storage Change\",\"authors\":\"Mohd anul haq, Abdul Khadar Jilani, P. Prabu\",\"doi\":\"10.32604/cmc.2022.020495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The understanding of water resource changes and a proper projec-tion of their future availability are necessary elements of sustainable water planning. Monitoring GWS change and future water resource availability are crucial, especially under changing climatic conditions. Traditional methods for in situ groundwater well measurement are a significant challenge due to data unavailability. The present investigation utilized the Long Short Term Memory (LSTM) networks to monitor and forecast Terrestrial Water Storage Change (TWSC) and Ground Water Storage Change (GWSC) based on Gravity Recovery and Climate Experiment (GRACE) datasets from 2003– 2025 for five basins of Saudi Arabia. An attempt has been made to assess the effects of rainfall, water used, and net budget modeling of groundwater. Analysis of GRACE-derived TWSC and GWSC estimates indicates that all five basins show depletion of water from 2003–2020 with a rate ranging from − 5.88 ± 1.2 mm/year to − 14.12 ± 1.2 mm/year and − 3.5 ± 1.5 to − 10.7 ± 1.5, respectively. Forecasting based on the developed LSTM model indicates that the investigated basins are likely to experience serious water depletion at rates ranging from − 7.78 ± 1.2 to − 15.6 ± 1.2 for TWSC and − 4.97 ± 1.5 to − 12.21 ± 1.5 for GWSC from 2020–2025. An interesting observation was a minor increase in rainfall during the study period for three basins.\",\"PeriodicalId\":10440,\"journal\":{\"name\":\"Cmc-computers Materials & Continua\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cmc-computers Materials & Continua\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32604/cmc.2022.020495\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.020495","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Deep Learning Based Modeling of Groundwater Storage Change
: The understanding of water resource changes and a proper projec-tion of their future availability are necessary elements of sustainable water planning. Monitoring GWS change and future water resource availability are crucial, especially under changing climatic conditions. Traditional methods for in situ groundwater well measurement are a significant challenge due to data unavailability. The present investigation utilized the Long Short Term Memory (LSTM) networks to monitor and forecast Terrestrial Water Storage Change (TWSC) and Ground Water Storage Change (GWSC) based on Gravity Recovery and Climate Experiment (GRACE) datasets from 2003– 2025 for five basins of Saudi Arabia. An attempt has been made to assess the effects of rainfall, water used, and net budget modeling of groundwater. Analysis of GRACE-derived TWSC and GWSC estimates indicates that all five basins show depletion of water from 2003–2020 with a rate ranging from − 5.88 ± 1.2 mm/year to − 14.12 ± 1.2 mm/year and − 3.5 ± 1.5 to − 10.7 ± 1.5, respectively. Forecasting based on the developed LSTM model indicates that the investigated basins are likely to experience serious water depletion at rates ranging from − 7.78 ± 1.2 to − 15.6 ± 1.2 for TWSC and − 4.97 ± 1.5 to − 12.21 ± 1.5 for GWSC from 2020–2025. An interesting observation was a minor increase in rainfall during the study period for three basins.
期刊介绍:
This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials.
Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.