{"title":"蜂窝网络天线定位问题的进化迭代局部搜索元启发式算法","authors":"Larbi Benmezal, B. Benhamou, D. Boughaci","doi":"10.1111/coin.12454","DOIUrl":null,"url":null,"abstract":"Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"30 1","pages":"1183 - 1214"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks\",\"authors\":\"Larbi Benmezal, B. Benhamou, D. Boughaci\",\"doi\":\"10.1111/coin.12454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"30 1\",\"pages\":\"1183 - 1214\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1111/coin.12454\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/coin.12454","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks
Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.