使用机器学习技术预测和减少虚拟学习中的辍学:系统回顾

Mariela Mizota Tamada, J. F. D. M. Netto, D. P. R. D. Lima
{"title":"使用机器学习技术预测和减少虚拟学习中的辍学:系统回顾","authors":"Mariela Mizota Tamada, J. F. D. M. Netto, D. P. R. D. Lima","doi":"10.1109/FIE43999.2019.9028545","DOIUrl":null,"url":null,"abstract":"Context: This Research to Practice Full Paper presents a systematic review of methodologies that propose ways of reducing dropout rate in Virtual Learning Environments (VLE). This generates large amounts of data about courses and students, whose analysis requires the use of computational analytical tools. Most educational institutions claim that the greatest issue in virtual learning courses is high student dropout rates. Goal: Our study aims to identify solutions that use Machine Learning (ML) techniques to reduce these high dropout rates. Method: We conducted a systematic review to identify, filter and classify primary studies. Results: The initial search of academic databases resulted in 199 papers, of which 13 papers were included in the final analysis. The review reports the historical evolution of the publications, the Machine Learning techniques used, the characteristics of data used, as well as identifies solutions proposed to reduce dropout in distance learning. Conclusion: Our study provides an overview of the state of the art of solutions proposed to reduce dropout rates using ML techniques and may guide future studies and tool development.","PeriodicalId":6700,"journal":{"name":"2019 IEEE Frontiers in Education Conference (FIE)","volume":"23 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Predicting and Reducing Dropout in Virtual Learning using Machine Learning Techniques: A Systematic Review\",\"authors\":\"Mariela Mizota Tamada, J. F. D. M. Netto, D. P. R. D. Lima\",\"doi\":\"10.1109/FIE43999.2019.9028545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: This Research to Practice Full Paper presents a systematic review of methodologies that propose ways of reducing dropout rate in Virtual Learning Environments (VLE). This generates large amounts of data about courses and students, whose analysis requires the use of computational analytical tools. Most educational institutions claim that the greatest issue in virtual learning courses is high student dropout rates. Goal: Our study aims to identify solutions that use Machine Learning (ML) techniques to reduce these high dropout rates. Method: We conducted a systematic review to identify, filter and classify primary studies. Results: The initial search of academic databases resulted in 199 papers, of which 13 papers were included in the final analysis. The review reports the historical evolution of the publications, the Machine Learning techniques used, the characteristics of data used, as well as identifies solutions proposed to reduce dropout in distance learning. Conclusion: Our study provides an overview of the state of the art of solutions proposed to reduce dropout rates using ML techniques and may guide future studies and tool development.\",\"PeriodicalId\":6700,\"journal\":{\"name\":\"2019 IEEE Frontiers in Education Conference (FIE)\",\"volume\":\"23 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Frontiers in Education Conference (FIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIE43999.2019.9028545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Frontiers in Education Conference (FIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIE43999.2019.9028545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

背景:本文对虚拟学习环境(VLE)中降低辍学率的方法进行了系统回顾。这会产生大量关于课程和学生的数据,这些数据的分析需要使用计算分析工具。大多数教育机构声称,虚拟学习课程的最大问题是学生辍学率高。目标:我们的研究旨在确定使用机器学习(ML)技术来降低这些高辍学率的解决方案。方法:我们进行了一项系统的综述来识别、筛选和分类原始研究。结果:初步检索到199篇论文,其中13篇论文被纳入最终分析。该评论报告了出版物的历史演变,使用的机器学习技术,使用的数据特征,以及确定提出的减少远程学习辍学的解决方案。结论:我们的研究概述了使用ML技术降低辍学率的解决方案的现状,并可能指导未来的研究和工具开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting and Reducing Dropout in Virtual Learning using Machine Learning Techniques: A Systematic Review
Context: This Research to Practice Full Paper presents a systematic review of methodologies that propose ways of reducing dropout rate in Virtual Learning Environments (VLE). This generates large amounts of data about courses and students, whose analysis requires the use of computational analytical tools. Most educational institutions claim that the greatest issue in virtual learning courses is high student dropout rates. Goal: Our study aims to identify solutions that use Machine Learning (ML) techniques to reduce these high dropout rates. Method: We conducted a systematic review to identify, filter and classify primary studies. Results: The initial search of academic databases resulted in 199 papers, of which 13 papers were included in the final analysis. The review reports the historical evolution of the publications, the Machine Learning techniques used, the characteristics of data used, as well as identifies solutions proposed to reduce dropout in distance learning. Conclusion: Our study provides an overview of the state of the art of solutions proposed to reduce dropout rates using ML techniques and may guide future studies and tool development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信