一维粒子在阶跃势中力算子的平均值。

S. Vincenzo
{"title":"一维粒子在阶跃势中力算子的平均值。","authors":"S. Vincenzo","doi":"10.1590/1806-9126-rbef-2020-0422","DOIUrl":null,"url":null,"abstract":"In the one-dimensional Klein-Fock-Gordon theory, the probability density is a discontinuous function at the point where the step potential is discontinuous. Thus, the mean value of the external classical force operator cannot be calculated from the corresponding formula of the mean value. To resolve this issue, we obtain this quantity directly from the Klein-Fock-Gordon equation in Hamiltonian form, or the Feshbach-Villars wave equation. Not without surprise, the result obtained is not proportional to the average of the discontinuity of the probability density but to the size of the discontinuity. In contrast, in the one-dimensional Schr\\\"odinger and Dirac theories this quantity is proportional to the value that the respective probability density takes at the point where the step potential is discontinuous. We examine these issues in detail in this paper. The presentation is suitable for the advanced undergraduate level.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the mean value of the force operator for 1D particles in the step potential.\",\"authors\":\"S. Vincenzo\",\"doi\":\"10.1590/1806-9126-rbef-2020-0422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the one-dimensional Klein-Fock-Gordon theory, the probability density is a discontinuous function at the point where the step potential is discontinuous. Thus, the mean value of the external classical force operator cannot be calculated from the corresponding formula of the mean value. To resolve this issue, we obtain this quantity directly from the Klein-Fock-Gordon equation in Hamiltonian form, or the Feshbach-Villars wave equation. Not without surprise, the result obtained is not proportional to the average of the discontinuity of the probability density but to the size of the discontinuity. In contrast, in the one-dimensional Schr\\\\\\\"odinger and Dirac theories this quantity is proportional to the value that the respective probability density takes at the point where the step potential is discontinuous. We examine these issues in detail in this paper. The presentation is suitable for the advanced undergraduate level.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1806-9126-rbef-2020-0422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1806-9126-rbef-2020-0422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在一维Klein-Fock-Gordon理论中,概率密度在阶跃势不连续点处是一个不连续函数。因此,经典外力算子的均值不能由相应的均值公式计算。为了解决这个问题,我们直接从哈密顿形式的Klein-Fock-Gordon方程或Feshbach-Villars波动方程中得到这个量。不出所料,得到的结果不是与概率密度不连续的平均值成正比,而是与不连续的大小成正比。相反,在一维Schr\ odinger和Dirac理论中,这个量与在阶跃势不连续点处各自的概率密度成正比。本文对这些问题进行了详细的研究。该报告适合高级本科水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the mean value of the force operator for 1D particles in the step potential.
In the one-dimensional Klein-Fock-Gordon theory, the probability density is a discontinuous function at the point where the step potential is discontinuous. Thus, the mean value of the external classical force operator cannot be calculated from the corresponding formula of the mean value. To resolve this issue, we obtain this quantity directly from the Klein-Fock-Gordon equation in Hamiltonian form, or the Feshbach-Villars wave equation. Not without surprise, the result obtained is not proportional to the average of the discontinuity of the probability density but to the size of the discontinuity. In contrast, in the one-dimensional Schr\"odinger and Dirac theories this quantity is proportional to the value that the respective probability density takes at the point where the step potential is discontinuous. We examine these issues in detail in this paper. The presentation is suitable for the advanced undergraduate level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信