阿拉伯语音素错读检测的判别特征选择

M.J. Khan
{"title":"阿拉伯语音素错读检测的判别特征选择","authors":"M.J. Khan","doi":"10.57041/pjs.v67i4.606","DOIUrl":null,"url":null,"abstract":"Pronunciation training is an important part of Computer Assisted Pronunciation Training (CAPT) systems. Mispronunciation detection systems recognized pronunciation mistakes from user’s speech and provided them feedback about their pronunciation. Acoustic phonetic features plays a vital role in speech classification based applications. This research work investigated the suitability of various acoustic features: pitch, energy, spectrum flux, zero-crossing, Entropy and MelFrequency Cepstral Coefficients (MFCCs). Sequential Forward Selection (SFS) was used to find out most suitable acoustic features from the computed feature set. This study used K-Nearest Neighbors (K-NN) classifier was used to detect the pronunciation mistakes from Arabic phonemes. This research selected the set of most discriminative acoustic features for each phoneme. K-NN achieved accuracy of 92.15% for mispronunciation detection of Arabic Phonemes.","PeriodicalId":19787,"journal":{"name":"Pakistan journal of science","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SELECTION OF DISCRIMINATIVE FEATURES FOR ARABIC PHONEME’S MISPRONUNCIATION DETECTION\",\"authors\":\"M.J. Khan\",\"doi\":\"10.57041/pjs.v67i4.606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pronunciation training is an important part of Computer Assisted Pronunciation Training (CAPT) systems. Mispronunciation detection systems recognized pronunciation mistakes from user’s speech and provided them feedback about their pronunciation. Acoustic phonetic features plays a vital role in speech classification based applications. This research work investigated the suitability of various acoustic features: pitch, energy, spectrum flux, zero-crossing, Entropy and MelFrequency Cepstral Coefficients (MFCCs). Sequential Forward Selection (SFS) was used to find out most suitable acoustic features from the computed feature set. This study used K-Nearest Neighbors (K-NN) classifier was used to detect the pronunciation mistakes from Arabic phonemes. This research selected the set of most discriminative acoustic features for each phoneme. K-NN achieved accuracy of 92.15% for mispronunciation detection of Arabic Phonemes.\",\"PeriodicalId\":19787,\"journal\":{\"name\":\"Pakistan journal of science\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57041/pjs.v67i4.606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57041/pjs.v67i4.606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语音训练是计算机辅助语音训练系统的重要组成部分。发音错误检测系统从用户的语音中识别发音错误,并为用户提供发音反馈。声学语音特征在基于语音分类的应用中起着至关重要的作用。本研究考察了各种声学特征的适用性:基音、能量、频谱通量、过零、熵和MelFrequency Cepstral系数(MFCCs)。使用顺序前向选择(SFS)从计算的特征集中找出最合适的声学特征。本研究使用k -近邻分类器(K-NN)检测阿拉伯文音素的发音错误。本研究为每个音素选择了一组最具区别性的声学特征。K-NN对阿拉伯音素的误发音检测准确率达到92.15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SELECTION OF DISCRIMINATIVE FEATURES FOR ARABIC PHONEME’S MISPRONUNCIATION DETECTION
Pronunciation training is an important part of Computer Assisted Pronunciation Training (CAPT) systems. Mispronunciation detection systems recognized pronunciation mistakes from user’s speech and provided them feedback about their pronunciation. Acoustic phonetic features plays a vital role in speech classification based applications. This research work investigated the suitability of various acoustic features: pitch, energy, spectrum flux, zero-crossing, Entropy and MelFrequency Cepstral Coefficients (MFCCs). Sequential Forward Selection (SFS) was used to find out most suitable acoustic features from the computed feature set. This study used K-Nearest Neighbors (K-NN) classifier was used to detect the pronunciation mistakes from Arabic phonemes. This research selected the set of most discriminative acoustic features for each phoneme. K-NN achieved accuracy of 92.15% for mispronunciation detection of Arabic Phonemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信