成分趋势滤波

Christopher Rieser, P. Filzmoser
{"title":"成分趋势滤波","authors":"Christopher Rieser, P. Filzmoser","doi":"10.33039/AMI.2021.02.004","DOIUrl":null,"url":null,"abstract":"Trend filtering is known as the technique for detecting piecewise linear trends in univariate time series. This technique is extended to the setting of compositional data, which are multivariate data where only the relative information is of importance. According to this, we formulate the problem and present a procedure how to efficiently solve it. To show the usefulness of this method, we consider the number of COVID-19 infections in several European countries in a chosen time period.","PeriodicalId":8040,"journal":{"name":"Applied Medical Informaticvs","volume":"23 1","pages":"257-270"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositional trend filtering\",\"authors\":\"Christopher Rieser, P. Filzmoser\",\"doi\":\"10.33039/AMI.2021.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trend filtering is known as the technique for detecting piecewise linear trends in univariate time series. This technique is extended to the setting of compositional data, which are multivariate data where only the relative information is of importance. According to this, we formulate the problem and present a procedure how to efficiently solve it. To show the usefulness of this method, we consider the number of COVID-19 infections in several European countries in a chosen time period.\",\"PeriodicalId\":8040,\"journal\":{\"name\":\"Applied Medical Informaticvs\",\"volume\":\"23 1\",\"pages\":\"257-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Medical Informaticvs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/AMI.2021.02.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Medical Informaticvs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/AMI.2021.02.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

趋势滤波是一种在单变量时间序列中检测分段线性趋势的技术。该技术扩展到组合数据的设置,组合数据是多元数据,其中只有相对信息是重要的。在此基础上提出了该问题,并给出了有效解决该问题的程序。为了证明这种方法的有效性,我们考虑了在选定的时间段内几个欧洲国家的COVID-19感染人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositional trend filtering
Trend filtering is known as the technique for detecting piecewise linear trends in univariate time series. This technique is extended to the setting of compositional data, which are multivariate data where only the relative information is of importance. According to this, we formulate the problem and present a procedure how to efficiently solve it. To show the usefulness of this method, we consider the number of COVID-19 infections in several European countries in a chosen time period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信