{"title":"蕨类植物叶肉解剖结构的变化对叶片气体交换、光捕获和叶片水力传导有显著影响","authors":"S Fujii, K Nishida, T K Akitsu, A Kume, Y T Hanba","doi":"10.32615/ps.2023.017","DOIUrl":null,"url":null,"abstract":"<p><p>The mesophyll anatomical traits are essential factors for efficient light capture, CO<sub>2</sub> diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO<sub>2</sub> capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (S<sub>c</sub>) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per S<sub>c</sub> was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability <i>via</i> the regulation of chloroplast density.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"19 1","pages":"225-235"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variation in leaf mesophyll anatomy of fern species imposes significant effects on leaf gas exchange, light capture, and leaf hydraulic conductance.\",\"authors\":\"S Fujii, K Nishida, T K Akitsu, A Kume, Y T Hanba\",\"doi\":\"10.32615/ps.2023.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mesophyll anatomical traits are essential factors for efficient light capture, CO<sub>2</sub> diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO<sub>2</sub> capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (S<sub>c</sub>) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per S<sub>c</sub> was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability <i>via</i> the regulation of chloroplast density.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"19 1\",\"pages\":\"225-235\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2023.017\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2023.017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Variation in leaf mesophyll anatomy of fern species imposes significant effects on leaf gas exchange, light capture, and leaf hydraulic conductance.
The mesophyll anatomical traits are essential factors for efficient light capture, CO2 diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO2 capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (Sc) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per Sc was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability via the regulation of chloroplast density.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.