基于核磁共振成像的纳米医疗设备的磁导航,用于深部组织的药物输送和热疗

J. Mathieu, S. Martel
{"title":"基于核磁共振成像的纳米医疗设备的磁导航,用于深部组织的药物输送和热疗","authors":"J. Mathieu, S. Martel","doi":"10.1109/NANO.2007.4601197","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) scanners can be used with minimum upgrades as integrated platforms for targeted delivery of micro/nanoparticles in the human body. In addition to being widespread in hospitals, they provide real-time tracking, control and means of propulsion for magnetic devices without penetration depth limitations. From these positive features, MRI appears as the perfect central element of a nanomedical navigation platform. Nevertheless, these assets are also coupled with constraints arising from the use of an already existing interventional platform. Potential magnetic nanoparticles-based carriers with the navigation platform are described. A simple magnetic suspension model taking magnetic dipole-dipole interactions into account is also proposed.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"15 1","pages":"312-315"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MRI-based magnetic navigation of nanomedical devices for drug delivery and hyperthermia in deep tissues\",\"authors\":\"J. Mathieu, S. Martel\",\"doi\":\"10.1109/NANO.2007.4601197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance imaging (MRI) scanners can be used with minimum upgrades as integrated platforms for targeted delivery of micro/nanoparticles in the human body. In addition to being widespread in hospitals, they provide real-time tracking, control and means of propulsion for magnetic devices without penetration depth limitations. From these positive features, MRI appears as the perfect central element of a nanomedical navigation platform. Nevertheless, these assets are also coupled with constraints arising from the use of an already existing interventional platform. Potential magnetic nanoparticles-based carriers with the navigation platform are described. A simple magnetic suspension model taking magnetic dipole-dipole interactions into account is also proposed.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"15 1\",\"pages\":\"312-315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

磁共振成像(MRI)扫描仪可以作为人体微/纳米颗粒靶向递送的集成平台,只需最少的升级即可使用。除了在医院广泛使用外,它们还为磁性装置提供实时跟踪、控制和推进手段,而不受穿透深度的限制。从这些积极的特征来看,MRI似乎是纳米医学导航平台的完美核心元素。然而,这些资产也与使用现有干预平台所产生的限制相结合。描述了具有导航平台的潜在磁性纳米粒子载体。提出了一个考虑磁偶极子-偶极子相互作用的简单磁悬浮模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRI-based magnetic navigation of nanomedical devices for drug delivery and hyperthermia in deep tissues
Magnetic resonance imaging (MRI) scanners can be used with minimum upgrades as integrated platforms for targeted delivery of micro/nanoparticles in the human body. In addition to being widespread in hospitals, they provide real-time tracking, control and means of propulsion for magnetic devices without penetration depth limitations. From these positive features, MRI appears as the perfect central element of a nanomedical navigation platform. Nevertheless, these assets are also coupled with constraints arising from the use of an already existing interventional platform. Potential magnetic nanoparticles-based carriers with the navigation platform are described. A simple magnetic suspension model taking magnetic dipole-dipole interactions into account is also proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信