{"title":"基于核磁共振成像的纳米医疗设备的磁导航,用于深部组织的药物输送和热疗","authors":"J. Mathieu, S. Martel","doi":"10.1109/NANO.2007.4601197","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) scanners can be used with minimum upgrades as integrated platforms for targeted delivery of micro/nanoparticles in the human body. In addition to being widespread in hospitals, they provide real-time tracking, control and means of propulsion for magnetic devices without penetration depth limitations. From these positive features, MRI appears as the perfect central element of a nanomedical navigation platform. Nevertheless, these assets are also coupled with constraints arising from the use of an already existing interventional platform. Potential magnetic nanoparticles-based carriers with the navigation platform are described. A simple magnetic suspension model taking magnetic dipole-dipole interactions into account is also proposed.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"15 1","pages":"312-315"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MRI-based magnetic navigation of nanomedical devices for drug delivery and hyperthermia in deep tissues\",\"authors\":\"J. Mathieu, S. Martel\",\"doi\":\"10.1109/NANO.2007.4601197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance imaging (MRI) scanners can be used with minimum upgrades as integrated platforms for targeted delivery of micro/nanoparticles in the human body. In addition to being widespread in hospitals, they provide real-time tracking, control and means of propulsion for magnetic devices without penetration depth limitations. From these positive features, MRI appears as the perfect central element of a nanomedical navigation platform. Nevertheless, these assets are also coupled with constraints arising from the use of an already existing interventional platform. Potential magnetic nanoparticles-based carriers with the navigation platform are described. A simple magnetic suspension model taking magnetic dipole-dipole interactions into account is also proposed.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"15 1\",\"pages\":\"312-315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MRI-based magnetic navigation of nanomedical devices for drug delivery and hyperthermia in deep tissues
Magnetic resonance imaging (MRI) scanners can be used with minimum upgrades as integrated platforms for targeted delivery of micro/nanoparticles in the human body. In addition to being widespread in hospitals, they provide real-time tracking, control and means of propulsion for magnetic devices without penetration depth limitations. From these positive features, MRI appears as the perfect central element of a nanomedical navigation platform. Nevertheless, these assets are also coupled with constraints arising from the use of an already existing interventional platform. Potential magnetic nanoparticles-based carriers with the navigation platform are described. A simple magnetic suspension model taking magnetic dipole-dipole interactions into account is also proposed.