D. Stradi, U. G. Vej-Hansen, P. Khomyakov, Maeng-Eun Lee, G. Penazzi, A. Blom, J. Wellendorff, S. Smidstrup, K. Stokbro
{"title":"基于密度泛函理论和非平衡格林函数方法的纳米铁电电容器原子建模","authors":"D. Stradi, U. G. Vej-Hansen, P. Khomyakov, Maeng-Eun Lee, G. Penazzi, A. Blom, J. Wellendorff, S. Smidstrup, K. Stokbro","doi":"10.1109/SISPAD.2019.8870397","DOIUrl":null,"url":null,"abstract":"We propose a first-principles atomistic method based on density functional theory and the non-equilibrium Green’s-function method to investigate the electronic and structural response of metal-insulator-metal capacitors under applied bias voltages. We validate our method by showing its usefulness in two paradigmatic cases where including finite-bias structural relaxation effects is critical to describe the device behavior: formation of dielectric dead layers in a paraelectric SRO|STO|SRO capacitor due to an applied bias voltage, and the switching behavior of a ferroelectric SRO|BTO|SRO capacitor due to an external electric field.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic Modeling Of Nanoscale Ferroelectric Capacitors Using a Density Functional Theory And Non-Equilibrium Green’s-Function Method\",\"authors\":\"D. Stradi, U. G. Vej-Hansen, P. Khomyakov, Maeng-Eun Lee, G. Penazzi, A. Blom, J. Wellendorff, S. Smidstrup, K. Stokbro\",\"doi\":\"10.1109/SISPAD.2019.8870397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a first-principles atomistic method based on density functional theory and the non-equilibrium Green’s-function method to investigate the electronic and structural response of metal-insulator-metal capacitors under applied bias voltages. We validate our method by showing its usefulness in two paradigmatic cases where including finite-bias structural relaxation effects is critical to describe the device behavior: formation of dielectric dead layers in a paraelectric SRO|STO|SRO capacitor due to an applied bias voltage, and the switching behavior of a ferroelectric SRO|BTO|SRO capacitor due to an external electric field.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"7 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atomistic Modeling Of Nanoscale Ferroelectric Capacitors Using a Density Functional Theory And Non-Equilibrium Green’s-Function Method
We propose a first-principles atomistic method based on density functional theory and the non-equilibrium Green’s-function method to investigate the electronic and structural response of metal-insulator-metal capacitors under applied bias voltages. We validate our method by showing its usefulness in two paradigmatic cases where including finite-bias structural relaxation effects is critical to describe the device behavior: formation of dielectric dead layers in a paraelectric SRO|STO|SRO capacitor due to an applied bias voltage, and the switching behavior of a ferroelectric SRO|BTO|SRO capacitor due to an external electric field.