镁取代对NiCuZn铁氧体热电性能的影响

M. Ramana, N. R. Reddy, K. Kumar
{"title":"镁取代对NiCuZn铁氧体热电性能的影响","authors":"M. Ramana, N. R. Reddy, K. Kumar","doi":"10.1155/2012/861690","DOIUrl":null,"url":null,"abstract":"Two series of NiMgCuZn ferrites, that is, (1) NixMg0.6−xCu0.1Zn0.3Fe2O4 and sample G: Ni0.3Mg0.3−yCu0.1Zn0.5−yFe2O4 with , 0.1, 0.2, 0.3 and (2) NixMg0.6−xCu0.1Zn0.3Fe2O4 with , 0.1, 0.2 were synthesized and prepared by conventional ceramic double-sintering process and to use them as core materials for microinductor applications. The formation of single phase was confirmed by X-ray diffraction. The temperature and compositional variation of DC, AC electrical conductivities (σ) and thermoelectric power were studied on these two series of polycrystalline ferrospinels. The studies were carried out in wide range of temperature from 30 to 350°C. On the basis of thermoelectric study, the ferrites under present work were found to be shown as n-type and p-type transition. The electrical conduction in these ferrospinels is explained in the light of polaron hopping mechanism. These ferrite compositions have been developed for their use as core materials for microinductor applications.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"29 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Influence of Magnesium Substitution on Thermal and Electrical Properties of NiCuZn Ferrites for Microinductor Core Applications\",\"authors\":\"M. Ramana, N. R. Reddy, K. Kumar\",\"doi\":\"10.1155/2012/861690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two series of NiMgCuZn ferrites, that is, (1) NixMg0.6−xCu0.1Zn0.3Fe2O4 and sample G: Ni0.3Mg0.3−yCu0.1Zn0.5−yFe2O4 with , 0.1, 0.2, 0.3 and (2) NixMg0.6−xCu0.1Zn0.3Fe2O4 with , 0.1, 0.2 were synthesized and prepared by conventional ceramic double-sintering process and to use them as core materials for microinductor applications. The formation of single phase was confirmed by X-ray diffraction. The temperature and compositional variation of DC, AC electrical conductivities (σ) and thermoelectric power were studied on these two series of polycrystalline ferrospinels. The studies were carried out in wide range of temperature from 30 to 350°C. On the basis of thermoelectric study, the ferrites under present work were found to be shown as n-type and p-type transition. The electrical conduction in these ferrospinels is explained in the light of polaron hopping mechanism. These ferrite compositions have been developed for their use as core materials for microinductor applications.\",\"PeriodicalId\":20143,\"journal\":{\"name\":\"Physics Research International\",\"volume\":\"29 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/861690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/861690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用传统陶瓷双烧结法合成制备了NixMg0.6−xCu0.1Zn0.3Fe2O4和样品G: Ni0.3Mg0.3−yCu0.1Zn0.5−yFe2O4(含0.1、0.2、0.3)和NixMg0.6−xCu0.1Zn0.3Fe2O4(含0.1、0.2)两个系列的NiMgCuZn铁氧体,并将其用作微电感器的芯材。x射线衍射证实了单相的形成。研究了两系多晶尖铁晶石的直流、交流电导率(σ)和热电功率的温度和组成变化。研究在30至350°C的宽温度范围内进行。在热电研究的基础上,发现本文研究的铁氧体表现为n型和p型跃迁。从极化子跳变机理解释了这些铁尖晶石的电导率。这些铁氧体成分已被开发用于微电感应用的核心材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Magnesium Substitution on Thermal and Electrical Properties of NiCuZn Ferrites for Microinductor Core Applications
Two series of NiMgCuZn ferrites, that is, (1) NixMg0.6−xCu0.1Zn0.3Fe2O4 and sample G: Ni0.3Mg0.3−yCu0.1Zn0.5−yFe2O4 with , 0.1, 0.2, 0.3 and (2) NixMg0.6−xCu0.1Zn0.3Fe2O4 with , 0.1, 0.2 were synthesized and prepared by conventional ceramic double-sintering process and to use them as core materials for microinductor applications. The formation of single phase was confirmed by X-ray diffraction. The temperature and compositional variation of DC, AC electrical conductivities (σ) and thermoelectric power were studied on these two series of polycrystalline ferrospinels. The studies were carried out in wide range of temperature from 30 to 350°C. On the basis of thermoelectric study, the ferrites under present work were found to be shown as n-type and p-type transition. The electrical conduction in these ferrospinels is explained in the light of polaron hopping mechanism. These ferrite compositions have been developed for their use as core materials for microinductor applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信