超越蛋白质编码序列:非编码rna在2型糖尿病发病机制中的作用。

Q3 Medicine
J. DiStefano
{"title":"超越蛋白质编码序列:非编码rna在2型糖尿病发病机制中的作用。","authors":"J. DiStefano","doi":"10.1900/RDS.2015.12.260","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus results from a deficiency or failure to maintain normal glucose homeostasis. The most common form of the disease is type 2 diabetes (T2D), a progressive metabolic disorder characterized by elevated glucose levels that develops in response to either multi-organ insulin resistance or insufficient insulin secretion from pancreatic β-cells. Although the etiology of T2D is complex, many factors are known to contribute to defects of glucose homeostasis, including obesity, unhealthy lifestyle choices, genetic susceptibility, and environmental exposures. In addition to these factors, noncoding RNAs (ncRNAs) have been recently implicated in the pathogenesis of T2D, playing roles in several of the pathophysiological mechanisms underlying the disease, particularly in insulin-sensitive tissues such as pancreatic β-cells, liver, muscle, and adipose tissue. A growing number of publications demonstrate that polymorphisms in ncRNAs or their target genes may represent a new class of genetic variation contributing to the development of T2D. This review summarizes both the current state of knowledge of ncRNAs, specifically microRNAs (miRNAs), involved in the regulation of β-cell function, insulin sensitivity, and insulin action in peripheral organs. The role of genetic variation in miRNAs or miRNA binding sites in the pathogenesis of T2D is also discussed. While far less is known about the impact of long ncRNAs (lncRNAs) in the development of T2D, emerging evidence suggests that these molecules may be able to contribute to β-cell dysfunction in response to hyperglycemia. This article provides an overview of the studies conducted to date in this field, focusing on lncRNAs that are dysregulated in human pancreatic islets.","PeriodicalId":34965,"journal":{"name":"Review of Diabetic Studies","volume":"120 1","pages":"260-76"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Beyond the Protein-Coding Sequence: Noncoding RNAs in the Pathogenesis of Type 2 Diabetes.\",\"authors\":\"J. DiStefano\",\"doi\":\"10.1900/RDS.2015.12.260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes mellitus results from a deficiency or failure to maintain normal glucose homeostasis. The most common form of the disease is type 2 diabetes (T2D), a progressive metabolic disorder characterized by elevated glucose levels that develops in response to either multi-organ insulin resistance or insufficient insulin secretion from pancreatic β-cells. Although the etiology of T2D is complex, many factors are known to contribute to defects of glucose homeostasis, including obesity, unhealthy lifestyle choices, genetic susceptibility, and environmental exposures. In addition to these factors, noncoding RNAs (ncRNAs) have been recently implicated in the pathogenesis of T2D, playing roles in several of the pathophysiological mechanisms underlying the disease, particularly in insulin-sensitive tissues such as pancreatic β-cells, liver, muscle, and adipose tissue. A growing number of publications demonstrate that polymorphisms in ncRNAs or their target genes may represent a new class of genetic variation contributing to the development of T2D. This review summarizes both the current state of knowledge of ncRNAs, specifically microRNAs (miRNAs), involved in the regulation of β-cell function, insulin sensitivity, and insulin action in peripheral organs. The role of genetic variation in miRNAs or miRNA binding sites in the pathogenesis of T2D is also discussed. While far less is known about the impact of long ncRNAs (lncRNAs) in the development of T2D, emerging evidence suggests that these molecules may be able to contribute to β-cell dysfunction in response to hyperglycemia. This article provides an overview of the studies conducted to date in this field, focusing on lncRNAs that are dysregulated in human pancreatic islets.\",\"PeriodicalId\":34965,\"journal\":{\"name\":\"Review of Diabetic Studies\",\"volume\":\"120 1\",\"pages\":\"260-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Diabetic Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1900/RDS.2015.12.260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Diabetic Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1900/RDS.2015.12.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 7

摘要

糖尿病是由于缺乏或不能维持正常的葡萄糖稳态而引起的。该疾病最常见的形式是2型糖尿病(T2D),这是一种进行性代谢紊乱,其特征是葡萄糖水平升高,是对多器官胰岛素抵抗或胰腺β细胞胰岛素分泌不足的反应。虽然T2D的病因复杂,但已知许多因素会导致葡萄糖稳态缺陷,包括肥胖、不健康的生活方式选择、遗传易感性和环境暴露。除了这些因素外,非编码rna (ncRNAs)最近被认为与T2D的发病机制有关,在几种潜在疾病的病理生理机制中发挥作用,特别是在胰岛素敏感组织,如胰腺β细胞、肝脏、肌肉和脂肪组织中。越来越多的出版物表明,ncrna或其靶基因的多态性可能代表了一类新的遗传变异,有助于T2D的发展。本文综述了参与外周器官β细胞功能、胰岛素敏感性和胰岛素作用调控的ncrna,特别是microrna (mirna)的最新研究进展。还讨论了miRNA或miRNA结合位点的遗传变异在T2D发病机制中的作用。虽然人们对长链ncRNAs (lncRNAs)在T2D发展中的影响知之甚少,但新出现的证据表明,这些分子可能有助于高血糖反应中β细胞功能障碍。本文概述了迄今为止在该领域进行的研究,重点关注人类胰岛中失调的lncrna。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond the Protein-Coding Sequence: Noncoding RNAs in the Pathogenesis of Type 2 Diabetes.
Diabetes mellitus results from a deficiency or failure to maintain normal glucose homeostasis. The most common form of the disease is type 2 diabetes (T2D), a progressive metabolic disorder characterized by elevated glucose levels that develops in response to either multi-organ insulin resistance or insufficient insulin secretion from pancreatic β-cells. Although the etiology of T2D is complex, many factors are known to contribute to defects of glucose homeostasis, including obesity, unhealthy lifestyle choices, genetic susceptibility, and environmental exposures. In addition to these factors, noncoding RNAs (ncRNAs) have been recently implicated in the pathogenesis of T2D, playing roles in several of the pathophysiological mechanisms underlying the disease, particularly in insulin-sensitive tissues such as pancreatic β-cells, liver, muscle, and adipose tissue. A growing number of publications demonstrate that polymorphisms in ncRNAs or their target genes may represent a new class of genetic variation contributing to the development of T2D. This review summarizes both the current state of knowledge of ncRNAs, specifically microRNAs (miRNAs), involved in the regulation of β-cell function, insulin sensitivity, and insulin action in peripheral organs. The role of genetic variation in miRNAs or miRNA binding sites in the pathogenesis of T2D is also discussed. While far less is known about the impact of long ncRNAs (lncRNAs) in the development of T2D, emerging evidence suggests that these molecules may be able to contribute to β-cell dysfunction in response to hyperglycemia. This article provides an overview of the studies conducted to date in this field, focusing on lncRNAs that are dysregulated in human pancreatic islets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Diabetic Studies
Review of Diabetic Studies Medicine-Internal Medicine
CiteScore
1.80
自引率
0.00%
发文量
28
期刊介绍: The Review of Diabetic Studies (RDS) is the society"s peer-reviewed journal published quarterly. The purpose of The RDS is to support and encourage research in biomedical diabetes-related science including areas such as endocrinology, immunology, epidemiology, genetics, cell-based research, developmental research, bioengineering and disease management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信