{"title":"瞬态树上高斯自由场的水平集渗透","authors":"Angelo Abacherli, A. Sznitman","doi":"10.1214/16-AIHP799","DOIUrl":null,"url":null,"abstract":"We investigate level-set percolation of the Gaussian free field on transient trees, for instance on super-critical Galton-Watson trees conditioned on non-extinction. Recently developed Dynkin-type isomorphism theorems provide a comparison with percolation of the vacant set of random interlacements, which is more tractable in the case of trees. If $h_*$ and $u_*$ denote the respective (non-negative) critical values of level-set percolation of the Gaussian free field and of the vacant set of random interlacements, we show here that $h_* 0$.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"2 1","pages":"173-201"},"PeriodicalIF":1.2000,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Level-set percolation for the Gaussian free field on a transient tree\",\"authors\":\"Angelo Abacherli, A. Sznitman\",\"doi\":\"10.1214/16-AIHP799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate level-set percolation of the Gaussian free field on transient trees, for instance on super-critical Galton-Watson trees conditioned on non-extinction. Recently developed Dynkin-type isomorphism theorems provide a comparison with percolation of the vacant set of random interlacements, which is more tractable in the case of trees. If $h_*$ and $u_*$ denote the respective (non-negative) critical values of level-set percolation of the Gaussian free field and of the vacant set of random interlacements, we show here that $h_* 0$.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"2 1\",\"pages\":\"173-201\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AIHP799\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AIHP799","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Level-set percolation for the Gaussian free field on a transient tree
We investigate level-set percolation of the Gaussian free field on transient trees, for instance on super-critical Galton-Watson trees conditioned on non-extinction. Recently developed Dynkin-type isomorphism theorems provide a comparison with percolation of the vacant set of random interlacements, which is more tractable in the case of trees. If $h_*$ and $u_*$ denote the respective (non-negative) critical values of level-set percolation of the Gaussian free field and of the vacant set of random interlacements, we show here that $h_* 0$.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.