{"title":"锂离子电池保护器的数字逻辑实现","authors":"Wing-Kong Ng, Wing-Shan Tam, Chi-Wah Kok","doi":"10.1016/j.ssel.2022.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>This letter presents an implementation of a li-ion battery protector circuit making use of purely digital logic and resistive divider only, which results in a compact and energy efficient circuit. The presented design is capable to provide all protections, that is compatible with other commercially available li-ion battery protectors. In particular, a reset clock has been implemented to reset the protector circuit periodically when it enters into one of the hazardous protection state, which serves as an auto-recovery function to restore the battery protector to normal operation without external assistance. Finally, the reset clock can be overridden with an external test clock which helps to reduce the test time of the integrated circuit in wafer level during mass production. The performance of the proposed circuit is validated by implementing the circuit on FPGA with external resistors, which further confirms that the fabrication of the proposed circuit on silicon is feasible.</p></div>","PeriodicalId":101175,"journal":{"name":"Solid State Electronics Letters","volume":"3 ","pages":"Pages 59-69"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589208822000011/pdfft?md5=8fe2ff300e074dd521654bfdda6c0b4e&pid=1-s2.0-S2589208822000011-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Digital Logic Implementation of Li-ion Battery Protector\",\"authors\":\"Wing-Kong Ng, Wing-Shan Tam, Chi-Wah Kok\",\"doi\":\"10.1016/j.ssel.2022.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This letter presents an implementation of a li-ion battery protector circuit making use of purely digital logic and resistive divider only, which results in a compact and energy efficient circuit. The presented design is capable to provide all protections, that is compatible with other commercially available li-ion battery protectors. In particular, a reset clock has been implemented to reset the protector circuit periodically when it enters into one of the hazardous protection state, which serves as an auto-recovery function to restore the battery protector to normal operation without external assistance. Finally, the reset clock can be overridden with an external test clock which helps to reduce the test time of the integrated circuit in wafer level during mass production. The performance of the proposed circuit is validated by implementing the circuit on FPGA with external resistors, which further confirms that the fabrication of the proposed circuit on silicon is feasible.</p></div>\",\"PeriodicalId\":101175,\"journal\":{\"name\":\"Solid State Electronics Letters\",\"volume\":\"3 \",\"pages\":\"Pages 59-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589208822000011/pdfft?md5=8fe2ff300e074dd521654bfdda6c0b4e&pid=1-s2.0-S2589208822000011-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Electronics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589208822000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589208822000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Logic Implementation of Li-ion Battery Protector
This letter presents an implementation of a li-ion battery protector circuit making use of purely digital logic and resistive divider only, which results in a compact and energy efficient circuit. The presented design is capable to provide all protections, that is compatible with other commercially available li-ion battery protectors. In particular, a reset clock has been implemented to reset the protector circuit periodically when it enters into one of the hazardous protection state, which serves as an auto-recovery function to restore the battery protector to normal operation without external assistance. Finally, the reset clock can be overridden with an external test clock which helps to reduce the test time of the integrated circuit in wafer level during mass production. The performance of the proposed circuit is validated by implementing the circuit on FPGA with external resistors, which further confirms that the fabrication of the proposed circuit on silicon is feasible.