Fahmi Rizal Fauzi, B. K. Hadi, S. Santosa, A. Jusuf
{"title":"基于复合材料的碰撞与安全轻量化结构设计","authors":"Fahmi Rizal Fauzi, B. K. Hadi, S. Santosa, A. Jusuf","doi":"10.1109/ICEVT.2018.8628325","DOIUrl":null,"url":null,"abstract":"Optimizing vehicle structures to obtain lightweight construction is an important task to increase power consumption efficiency, especially for electric vehicles. On the other hand, lightweight vehicles typically have crashworthiness concerns. Vehicle crashworthiness is becoming very critical for electric vehicle due to potential for high voltage shortage and thermal issues of the battery system. Composite materials can become an option to fulfill the lightweight structure requirements because of strength to weight ratio higher than common metallic materials. In the developments of electricity vehicles, composite materials can be the first option to protect the structure from shortage issues. This research studied the experimental and numerical analysis of composite based crashbox structures. The crashbox was made of carbon fiber reinforced polymer composite (CFRP) with the double hat thin-walled constructions. The simulation and experimental studies of the crashbox was done under the axial crushing load. Specimens were made with various thicknesses and various number of layers. The crashworthiness simulation of the composite based crashbox structure shows good agreement with experimental results. The simulation was done by using LS-Dyna code, and damage kinematics was able to be replicated by adjusting critical parameters of DFAIL and SOFT.","PeriodicalId":6659,"journal":{"name":"2018 5th International Conference on Electric Vehicular Technology (ICEVT)","volume":"9 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Composite Based Lightweight Structure Design for Crash and Safety Application\",\"authors\":\"Fahmi Rizal Fauzi, B. K. Hadi, S. Santosa, A. Jusuf\",\"doi\":\"10.1109/ICEVT.2018.8628325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing vehicle structures to obtain lightweight construction is an important task to increase power consumption efficiency, especially for electric vehicles. On the other hand, lightweight vehicles typically have crashworthiness concerns. Vehicle crashworthiness is becoming very critical for electric vehicle due to potential for high voltage shortage and thermal issues of the battery system. Composite materials can become an option to fulfill the lightweight structure requirements because of strength to weight ratio higher than common metallic materials. In the developments of electricity vehicles, composite materials can be the first option to protect the structure from shortage issues. This research studied the experimental and numerical analysis of composite based crashbox structures. The crashbox was made of carbon fiber reinforced polymer composite (CFRP) with the double hat thin-walled constructions. The simulation and experimental studies of the crashbox was done under the axial crushing load. Specimens were made with various thicknesses and various number of layers. The crashworthiness simulation of the composite based crashbox structure shows good agreement with experimental results. The simulation was done by using LS-Dyna code, and damage kinematics was able to be replicated by adjusting critical parameters of DFAIL and SOFT.\",\"PeriodicalId\":6659,\"journal\":{\"name\":\"2018 5th International Conference on Electric Vehicular Technology (ICEVT)\",\"volume\":\"9 1\",\"pages\":\"161-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Electric Vehicular Technology (ICEVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEVT.2018.8628325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electric Vehicular Technology (ICEVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVT.2018.8628325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Composite Based Lightweight Structure Design for Crash and Safety Application
Optimizing vehicle structures to obtain lightweight construction is an important task to increase power consumption efficiency, especially for electric vehicles. On the other hand, lightweight vehicles typically have crashworthiness concerns. Vehicle crashworthiness is becoming very critical for electric vehicle due to potential for high voltage shortage and thermal issues of the battery system. Composite materials can become an option to fulfill the lightweight structure requirements because of strength to weight ratio higher than common metallic materials. In the developments of electricity vehicles, composite materials can be the first option to protect the structure from shortage issues. This research studied the experimental and numerical analysis of composite based crashbox structures. The crashbox was made of carbon fiber reinforced polymer composite (CFRP) with the double hat thin-walled constructions. The simulation and experimental studies of the crashbox was done under the axial crushing load. Specimens were made with various thicknesses and various number of layers. The crashworthiness simulation of the composite based crashbox structure shows good agreement with experimental results. The simulation was done by using LS-Dyna code, and damage kinematics was able to be replicated by adjusting critical parameters of DFAIL and SOFT.