金属交换天然沸石和SBA-15催化剂催化SCR-NH3降低典型柴油NOx排放

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Indoor air Pub Date : 2023-06-30 DOI:10.3390/air1030012
Amanda P.M.P. Alcantara, Mona Lisa Moura de Oliveira, Jesuína Cássia Santiago de Araújo, R. dos Santos Araújo, Rita Karolinny Chaves de Lima, A. Bueno, Maria Eugênia Vieira da Silva, P. A. Costa Rocha, E. Rodriguez-castellon
{"title":"金属交换天然沸石和SBA-15催化剂催化SCR-NH3降低典型柴油NOx排放","authors":"Amanda P.M.P. Alcantara, Mona Lisa Moura de Oliveira, Jesuína Cássia Santiago de Araújo, R. dos Santos Araújo, Rita Karolinny Chaves de Lima, A. Bueno, Maria Eugênia Vieira da Silva, P. A. Costa Rocha, E. Rodriguez-castellon","doi":"10.3390/air1030012","DOIUrl":null,"url":null,"abstract":"In this work, the catalytic performance of clinoptilolite (CLIN) and SBA-15 catalysts, doped with Fe and Cu, was evaluated in the selective catalytic reduction of NO using NH3 as a reducing agent (SCR-NH3). Both Cu-CLIN and Fe-CLIN were obtained by ion-exchange using natural clinoptilolite zeolite originating from the Hrabovec deposit (northeast Slovakia region). Cu-SBA-15 and Fe-SBA-15 were prepared by impregnation into SBA-15 mesoporous synthesized silica. Standard catalytic activity tests were carried out on a bench-scale laboratory apparatus using a reaction mixture of a standard test. GHSV of 48,000 h−1 was adopted based on the space velocity of a real NH3-SCR catalyst for diesel vehicles (100–550 °C). All Cu-doped samples showed better NO conversion values than Fe-doped samples. Clinoptilolite catalysts were more active than those based on SBA-15. Maximum NO conversions of about 96% were observed for Cu-CLIN and Fe-CLIN at 350–400 °C, respectively. Moreover, Fe-CLIN also showed higher stability in the presence of SO2 and water steam at 350 °C. These results demonstrate the potential of metal-doped natural clinoptilolite to be used as cost-effective catalysts applied to the abatement of NOx emissions generated in automotive combustion processes.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"11 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of Typical Diesel NOx Emissions by SCR-NH3 Using Metal-Exchanged Natural Zeolite and SBA-15 Catalysts\",\"authors\":\"Amanda P.M.P. Alcantara, Mona Lisa Moura de Oliveira, Jesuína Cássia Santiago de Araújo, R. dos Santos Araújo, Rita Karolinny Chaves de Lima, A. Bueno, Maria Eugênia Vieira da Silva, P. A. Costa Rocha, E. Rodriguez-castellon\",\"doi\":\"10.3390/air1030012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the catalytic performance of clinoptilolite (CLIN) and SBA-15 catalysts, doped with Fe and Cu, was evaluated in the selective catalytic reduction of NO using NH3 as a reducing agent (SCR-NH3). Both Cu-CLIN and Fe-CLIN were obtained by ion-exchange using natural clinoptilolite zeolite originating from the Hrabovec deposit (northeast Slovakia region). Cu-SBA-15 and Fe-SBA-15 were prepared by impregnation into SBA-15 mesoporous synthesized silica. Standard catalytic activity tests were carried out on a bench-scale laboratory apparatus using a reaction mixture of a standard test. GHSV of 48,000 h−1 was adopted based on the space velocity of a real NH3-SCR catalyst for diesel vehicles (100–550 °C). All Cu-doped samples showed better NO conversion values than Fe-doped samples. Clinoptilolite catalysts were more active than those based on SBA-15. Maximum NO conversions of about 96% were observed for Cu-CLIN and Fe-CLIN at 350–400 °C, respectively. Moreover, Fe-CLIN also showed higher stability in the presence of SO2 and water steam at 350 °C. These results demonstrate the potential of metal-doped natural clinoptilolite to be used as cost-effective catalysts applied to the abatement of NOx emissions generated in automotive combustion processes.\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/air1030012\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/air1030012","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以NH3为还原剂(SCR-NH3)对斜发沸石(CLIN)和SBA-15催化剂(Fe和Cu掺杂)选择性催化还原NO的催化性能。Cu-CLIN和Fe-CLIN均由产自斯洛伐克东北部Hrabovec矿床的天然斜沸石沸石离子交换得到。在SBA-15介孔合成二氧化硅中浸渍制备了Cu-SBA-15和Fe-SBA-15。标准的催化活性测试是在一个试验台规模的实验室设备上使用标准测试的反应混合物进行的。根据柴油车用真实NH3-SCR催化剂的空速(100-550℃),GHSV为48,000 h−1。cu掺杂样品的NO转换值均优于fe掺杂样品。斜沸石催化剂比基于SBA-15的催化剂活性更高。Cu-CLIN和Fe-CLIN在350 ~ 400℃时的NO转化率分别达到96%左右。此外,Fe-CLIN在350℃的SO2和水蒸气存在下也表现出更高的稳定性。这些结果表明,金属掺杂的天然斜沸石有潜力作为具有成本效益的催化剂,用于减少汽车燃烧过程中产生的氮氧化物排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of Typical Diesel NOx Emissions by SCR-NH3 Using Metal-Exchanged Natural Zeolite and SBA-15 Catalysts
In this work, the catalytic performance of clinoptilolite (CLIN) and SBA-15 catalysts, doped with Fe and Cu, was evaluated in the selective catalytic reduction of NO using NH3 as a reducing agent (SCR-NH3). Both Cu-CLIN and Fe-CLIN were obtained by ion-exchange using natural clinoptilolite zeolite originating from the Hrabovec deposit (northeast Slovakia region). Cu-SBA-15 and Fe-SBA-15 were prepared by impregnation into SBA-15 mesoporous synthesized silica. Standard catalytic activity tests were carried out on a bench-scale laboratory apparatus using a reaction mixture of a standard test. GHSV of 48,000 h−1 was adopted based on the space velocity of a real NH3-SCR catalyst for diesel vehicles (100–550 °C). All Cu-doped samples showed better NO conversion values than Fe-doped samples. Clinoptilolite catalysts were more active than those based on SBA-15. Maximum NO conversions of about 96% were observed for Cu-CLIN and Fe-CLIN at 350–400 °C, respectively. Moreover, Fe-CLIN also showed higher stability in the presence of SO2 and water steam at 350 °C. These results demonstrate the potential of metal-doped natural clinoptilolite to be used as cost-effective catalysts applied to the abatement of NOx emissions generated in automotive combustion processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信