基于SOM和支持向量机的数据分布自动识别

Jia-Yuan Zhu, Heng-Xi Zhang, J. Guo, Jingyu Feng
{"title":"基于SOM和支持向量机的数据分布自动识别","authors":"Jia-Yuan Zhu, Heng-Xi Zhang, J. Guo, Jingyu Feng","doi":"10.1109/ICMLC.2002.1176770","DOIUrl":null,"url":null,"abstract":"It is very important to identify probability distributions fast and efficiently in data analysis. The paper analyzes data distributions automatic identification using a combined structure mode via self-organizing map and support vector machines. First, the paper sets up data distributions identification training sets, which are based on summary statistics including kurtosis, skewness, quantile and cumulative probability. Then, different data distributions are clustered using a self-organizing map. Furthermore, the clusters are learned and classified respectively using support vector machines. Finally, identification of random data distribution time series is tested in combined structure mode. The results indicate that the approach of the paper is feasible and efficient for automatically identifying data distributions in comparison with other methods.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"10 1","pages":"340-344 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Data distributions automatic identification based on SOM and support vector machines\",\"authors\":\"Jia-Yuan Zhu, Heng-Xi Zhang, J. Guo, Jingyu Feng\",\"doi\":\"10.1109/ICMLC.2002.1176770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is very important to identify probability distributions fast and efficiently in data analysis. The paper analyzes data distributions automatic identification using a combined structure mode via self-organizing map and support vector machines. First, the paper sets up data distributions identification training sets, which are based on summary statistics including kurtosis, skewness, quantile and cumulative probability. Then, different data distributions are clustered using a self-organizing map. Furthermore, the clusters are learned and classified respectively using support vector machines. Finally, identification of random data distribution time series is tested in combined structure mode. The results indicate that the approach of the paper is feasible and efficient for automatically identifying data distributions in comparison with other methods.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"10 1\",\"pages\":\"340-344 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1176770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在数据分析中,快速有效地识别概率分布是非常重要的。本文分析了一种基于自组织映射和支持向量机的数据分布自动识别组合结构模式。首先,建立了基于峰度、偏度、分位数和累积概率等汇总统计的数据分布识别训练集;然后,使用自组织映射对不同的数据分布进行聚类。此外,使用支持向量机分别对聚类进行学习和分类。最后,在组合结构模式下对随机数据分布时间序列的识别进行了验证。结果表明,与其他方法相比,本文方法对数据分布的自动识别是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data distributions automatic identification based on SOM and support vector machines
It is very important to identify probability distributions fast and efficiently in data analysis. The paper analyzes data distributions automatic identification using a combined structure mode via self-organizing map and support vector machines. First, the paper sets up data distributions identification training sets, which are based on summary statistics including kurtosis, skewness, quantile and cumulative probability. Then, different data distributions are clustered using a self-organizing map. Furthermore, the clusters are learned and classified respectively using support vector machines. Finally, identification of random data distribution time series is tested in combined structure mode. The results indicate that the approach of the paper is feasible and efficient for automatically identifying data distributions in comparison with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信