以糖蜜为碳源、不添加谷氨酸的velezensis芽孢杆菌NRRL B - 23189液体发酵产聚γ-谷氨酸的优化

Luana Pereira de Moraes, R. Alegre, P. N. Brito
{"title":"以糖蜜为碳源、不添加谷氨酸的velezensis芽孢杆菌NRRL B - 23189液体发酵产聚γ-谷氨酸的优化","authors":"Luana Pereira de Moraes, R. Alegre, P. N. Brito","doi":"10.15866/IREBIC.V5I5.5995","DOIUrl":null,"url":null,"abstract":"Poly (γ-glutamic acid), also known as γ-PGA, is an extracellular polymer produced by microbial fermentation. It is water-soluble, edible, biodegradable, non-toxic towards humans and the environment, and it has many available sites for drug conjugation and a powerful ability to solubilise hydrophobic molecules. This work reports the application of molasses, citric acid and ammonium sulphate in the fermentation by Bacillus velezensis NRRL-23189 to produce γ-PGA and the detection of molasses consumption without the use of glutamic acid as a nutrient. Different concentrations of molasses, citric acid and ammonium sulphate were studied. The fermentation was agitated at 200 rpm at 27oC for 72 h, with an initial pH of 6.5 (NaOH 2N and HCl 2N). Spectrophotometric analyses were used to measure concentrations of γ-PGA and the residual sugar from molasses degradation. The maximum production of γ-PGA was 4.82 g/l, in a medium with molasses (200g/l), citric acid (12.5g/l) and ammonium sulphate (8g/l) in a fermentation that also resulted in the maximum sugar consumption.","PeriodicalId":14377,"journal":{"name":"International Review of Biophysical Chemistry","volume":"20 1","pages":"130-135"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimisation of Poly(γ-Glutamic Acid) Production by Bacillus velezensis NRRL B – 23189 in Liquid Fermentation with Molasses as the Carbon Source without Addition of Glutamic Acid\",\"authors\":\"Luana Pereira de Moraes, R. Alegre, P. N. Brito\",\"doi\":\"10.15866/IREBIC.V5I5.5995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly (γ-glutamic acid), also known as γ-PGA, is an extracellular polymer produced by microbial fermentation. It is water-soluble, edible, biodegradable, non-toxic towards humans and the environment, and it has many available sites for drug conjugation and a powerful ability to solubilise hydrophobic molecules. This work reports the application of molasses, citric acid and ammonium sulphate in the fermentation by Bacillus velezensis NRRL-23189 to produce γ-PGA and the detection of molasses consumption without the use of glutamic acid as a nutrient. Different concentrations of molasses, citric acid and ammonium sulphate were studied. The fermentation was agitated at 200 rpm at 27oC for 72 h, with an initial pH of 6.5 (NaOH 2N and HCl 2N). Spectrophotometric analyses were used to measure concentrations of γ-PGA and the residual sugar from molasses degradation. The maximum production of γ-PGA was 4.82 g/l, in a medium with molasses (200g/l), citric acid (12.5g/l) and ammonium sulphate (8g/l) in a fermentation that also resulted in the maximum sugar consumption.\",\"PeriodicalId\":14377,\"journal\":{\"name\":\"International Review of Biophysical Chemistry\",\"volume\":\"20 1\",\"pages\":\"130-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Biophysical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREBIC.V5I5.5995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Biophysical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREBIC.V5I5.5995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

聚γ-谷氨酸,又称γ-PGA,是一种由微生物发酵产生的胞外聚合物。它是水溶性的、可食用的、可生物降解的、对人体和环境无毒的,并且它有许多可用的药物偶联位点和强大的溶解疏水分子的能力。本文报道了用糖蜜、柠檬酸和硫酸铵在velezensis芽孢杆菌NRRL-23189发酵生产γ-PGA的过程中,在不使用谷氨酸作为营养物质的情况下测定糖蜜的消耗量。研究了不同浓度的糖蜜、柠檬酸和硫酸铵。在27℃下,200 rpm搅拌72 h,初始pH为6.5 (NaOH 2N和HCl 2N)。用分光光度法测定了γ-PGA和糖蜜降解残糖的浓度。在添加糖蜜(200g/l)、柠檬酸(12.5g/l)和硫酸铵(8g/l)的培养基中发酵,γ-PGA的最大产量为4.82 g/l,同时糖消耗也最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation of Poly(γ-Glutamic Acid) Production by Bacillus velezensis NRRL B – 23189 in Liquid Fermentation with Molasses as the Carbon Source without Addition of Glutamic Acid
Poly (γ-glutamic acid), also known as γ-PGA, is an extracellular polymer produced by microbial fermentation. It is water-soluble, edible, biodegradable, non-toxic towards humans and the environment, and it has many available sites for drug conjugation and a powerful ability to solubilise hydrophobic molecules. This work reports the application of molasses, citric acid and ammonium sulphate in the fermentation by Bacillus velezensis NRRL-23189 to produce γ-PGA and the detection of molasses consumption without the use of glutamic acid as a nutrient. Different concentrations of molasses, citric acid and ammonium sulphate were studied. The fermentation was agitated at 200 rpm at 27oC for 72 h, with an initial pH of 6.5 (NaOH 2N and HCl 2N). Spectrophotometric analyses were used to measure concentrations of γ-PGA and the residual sugar from molasses degradation. The maximum production of γ-PGA was 4.82 g/l, in a medium with molasses (200g/l), citric acid (12.5g/l) and ammonium sulphate (8g/l) in a fermentation that also resulted in the maximum sugar consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信