Ambbar Aballay-González, J. Gallardo-Rodríguez, Macarena Silva-Higuera, Alejandra Rivera, V. Ulloa, Lorena Delgado-Rivera, Andrea Rivera-Belmar, Allisson Astuya
{"title":"以神经-2a细胞为基础的毒性等效因子测定-智利受污染贝类样品的建议和评价","authors":"Ambbar Aballay-González, J. Gallardo-Rodríguez, Macarena Silva-Higuera, Alejandra Rivera, V. Ulloa, Lorena Delgado-Rivera, Andrea Rivera-Belmar, Allisson Astuya","doi":"10.1080/19440049.2019.1676919","DOIUrl":null,"url":null,"abstract":"ABSTRACT There are two official PSP detection methods (mouse bioassay and HLPC-FLD) and a number of alternative methods. Ethical considerations have led to regulations being adopted in some countries that limit or prohibit the application of mouse bioassay. Analytical methodologies (e.g. HPLC-FLD or LC-MSMS) have the disadvantages of not being able to detect new toxins or analogues or reflecting the overall toxicity of the sample. In addition, they require highly trained personnel and expensive equipment, which are not always available. In this work, we have evaluated a method based on the Neuro-2a cell-based assay to detect substances that inhibit voltage-dependent sodium channels (Manger’s method). We tested PSP standards and natural samples contaminated with PSP. Here we demonstrate that the adapted Manger’s method is suitable for calculating Toxicity Equivalency Factors (TEF) for STX-analogues. The method was shown to be useful for screening contaminated natural samples in concentrations above the regulatory limit for these toxins (80 μg STX equivalents/100 g shellfish). We were able to detect PSP in 19 natural mollusc samples from South Chile despite the presence of other marine toxins. These preliminary results suggest that the method could be used as a first step in screening programmes.","PeriodicalId":12121,"journal":{"name":"Food Additives & Contaminants: Part A","volume":"38 1","pages":"162 - 173"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neuro-2a cell-based assay for toxicity equivalency factor - proposal and evaluation in Chilean contaminated shellfish samples\",\"authors\":\"Ambbar Aballay-González, J. Gallardo-Rodríguez, Macarena Silva-Higuera, Alejandra Rivera, V. Ulloa, Lorena Delgado-Rivera, Andrea Rivera-Belmar, Allisson Astuya\",\"doi\":\"10.1080/19440049.2019.1676919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There are two official PSP detection methods (mouse bioassay and HLPC-FLD) and a number of alternative methods. Ethical considerations have led to regulations being adopted in some countries that limit or prohibit the application of mouse bioassay. Analytical methodologies (e.g. HPLC-FLD or LC-MSMS) have the disadvantages of not being able to detect new toxins or analogues or reflecting the overall toxicity of the sample. In addition, they require highly trained personnel and expensive equipment, which are not always available. In this work, we have evaluated a method based on the Neuro-2a cell-based assay to detect substances that inhibit voltage-dependent sodium channels (Manger’s method). We tested PSP standards and natural samples contaminated with PSP. Here we demonstrate that the adapted Manger’s method is suitable for calculating Toxicity Equivalency Factors (TEF) for STX-analogues. The method was shown to be useful for screening contaminated natural samples in concentrations above the regulatory limit for these toxins (80 μg STX equivalents/100 g shellfish). We were able to detect PSP in 19 natural mollusc samples from South Chile despite the presence of other marine toxins. These preliminary results suggest that the method could be used as a first step in screening programmes.\",\"PeriodicalId\":12121,\"journal\":{\"name\":\"Food Additives & Contaminants: Part A\",\"volume\":\"38 1\",\"pages\":\"162 - 173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Additives & Contaminants: Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19440049.2019.1676919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives & Contaminants: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19440049.2019.1676919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuro-2a cell-based assay for toxicity equivalency factor - proposal and evaluation in Chilean contaminated shellfish samples
ABSTRACT There are two official PSP detection methods (mouse bioassay and HLPC-FLD) and a number of alternative methods. Ethical considerations have led to regulations being adopted in some countries that limit or prohibit the application of mouse bioassay. Analytical methodologies (e.g. HPLC-FLD or LC-MSMS) have the disadvantages of not being able to detect new toxins or analogues or reflecting the overall toxicity of the sample. In addition, they require highly trained personnel and expensive equipment, which are not always available. In this work, we have evaluated a method based on the Neuro-2a cell-based assay to detect substances that inhibit voltage-dependent sodium channels (Manger’s method). We tested PSP standards and natural samples contaminated with PSP. Here we demonstrate that the adapted Manger’s method is suitable for calculating Toxicity Equivalency Factors (TEF) for STX-analogues. The method was shown to be useful for screening contaminated natural samples in concentrations above the regulatory limit for these toxins (80 μg STX equivalents/100 g shellfish). We were able to detect PSP in 19 natural mollusc samples from South Chile despite the presence of other marine toxins. These preliminary results suggest that the method could be used as a first step in screening programmes.