广义Chaplygin气体的Aw-Rascle交通流模型解的极限

IF 0.5 4区 数学 Q3 MATHEMATICS
Yu Zhang, S. Fan
{"title":"广义Chaplygin气体的Aw-Rascle交通流模型解的极限","authors":"Yu Zhang, S. Fan","doi":"10.1063/5.0140635","DOIUrl":null,"url":null,"abstract":"The Riemann problem for the Aw-Rascle (AR) traffic flow model with a double parameter perturbation containing flux and generalized Chaplygin gas is first solved. Then, we show that the delta-shock solution of the perturbed AR model converges to that of the original AR model as the flux perturbation vanishes alone. Particularly, it is proved that as the flux perturbation and pressure decrease, the classical solution of the perturbed system involving a shock wave and a contact discontinuity will first converge to a critical delta shock wave of the perturbed system itself and only later to the delta-shock solution of the pressureless gas dynamics (PGD) model. This formation mechanism is interesting and innovative in the study of the AR model. By contrast, any solution containing a rarefaction wave and a contact discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some representatively numerical results consistent with the theoretical analysis are presented.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limits of solutions to the Aw-Rascle traffic flow model with generalized Chaplygin gas by flux approximation\",\"authors\":\"Yu Zhang, S. Fan\",\"doi\":\"10.1063/5.0140635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Riemann problem for the Aw-Rascle (AR) traffic flow model with a double parameter perturbation containing flux and generalized Chaplygin gas is first solved. Then, we show that the delta-shock solution of the perturbed AR model converges to that of the original AR model as the flux perturbation vanishes alone. Particularly, it is proved that as the flux perturbation and pressure decrease, the classical solution of the perturbed system involving a shock wave and a contact discontinuity will first converge to a critical delta shock wave of the perturbed system itself and only later to the delta-shock solution of the pressureless gas dynamics (PGD) model. This formation mechanism is interesting and innovative in the study of the AR model. By contrast, any solution containing a rarefaction wave and a contact discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some representatively numerical results consistent with the theoretical analysis are presented.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0140635\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0140635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

首先求解了含有通量和广义Chaplygin气体的双参数摄动Aw-Rascle (AR)交通流模型的Riemann问题。然后,我们证明了当通量扰动单独消失时,扰动AR模型的delta激波解收敛于原始AR模型的delta激波解。特别地,证明了随着通量摄动和压力的减小,涉及激波和接触不连续的摄动系统的经典解首先收敛为摄动系统本身的临界δ激波,然后才收敛为无压气体动力学(PGD)模型的δ激波解。这种形成机制在AR模型的研究中是有趣和创新的。相比之下,任何包含稀薄波和接触不连续的溶液都趋向于PGD模型的双接触不连续解,而介于两者之间的非真空中间态则趋向于真空状态。最后,给出了与理论分析相一致的具有代表性的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limits of solutions to the Aw-Rascle traffic flow model with generalized Chaplygin gas by flux approximation
The Riemann problem for the Aw-Rascle (AR) traffic flow model with a double parameter perturbation containing flux and generalized Chaplygin gas is first solved. Then, we show that the delta-shock solution of the perturbed AR model converges to that of the original AR model as the flux perturbation vanishes alone. Particularly, it is proved that as the flux perturbation and pressure decrease, the classical solution of the perturbed system involving a shock wave and a contact discontinuity will first converge to a critical delta shock wave of the perturbed system itself and only later to the delta-shock solution of the pressureless gas dynamics (PGD) model. This formation mechanism is interesting and innovative in the study of the AR model. By contrast, any solution containing a rarefaction wave and a contact discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some representatively numerical results consistent with the theoretical analysis are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信