数字图像拓扑复杂性的反例

M. İs, .Ismet Karaca
{"title":"数字图像拓扑复杂性的反例","authors":"M. İs, .Ismet Karaca","doi":"10.7251/JIMVI2201103I","DOIUrl":null,"url":null,"abstract":"Digital topology has its own working conditions and sometimes differs from the normal topology. In the area of topological robotics, we have important counterexamples in this study to emphasize this red line between a digital image and a topological space. We indicate that the results on topological complexities of certain path-connected topological spaces show alterations in digital images. We also give a result about the digital topological complexity number using the genus of a digital surface in discrete geometry.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Counterexamples for Topological Complexity in Digital Images\",\"authors\":\"M. İs, .Ismet Karaca\",\"doi\":\"10.7251/JIMVI2201103I\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital topology has its own working conditions and sometimes differs from the normal topology. In the area of topological robotics, we have important counterexamples in this study to emphasize this red line between a digital image and a topological space. We indicate that the results on topological complexities of certain path-connected topological spaces show alterations in digital images. We also give a result about the digital topological complexity number using the genus of a digital surface in discrete geometry.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7251/JIMVI2201103I\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7251/JIMVI2201103I","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数字拓扑有其自身的工作条件,有时与普通拓扑有所不同。在拓扑机器人领域,我们在本研究中有重要的反例来强调数字图像和拓扑空间之间的红线。结果表明,某些路径连通拓扑空间的拓扑复杂性在数字图像中表现出变化。我们还利用离散几何中数字曲面的格给出了关于数字拓扑复杂度数的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterexamples for Topological Complexity in Digital Images
Digital topology has its own working conditions and sometimes differs from the normal topology. In the area of topological robotics, we have important counterexamples in this study to emphasize this red line between a digital image and a topological space. We indicate that the results on topological complexities of certain path-connected topological spaces show alterations in digital images. We also give a result about the digital topological complexity number using the genus of a digital surface in discrete geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信