研究了热喷涂和微弧氧化制备的钛复合涂层的性能

C-C. Huang, HM Li, DH Li, SY Lin
{"title":"研究了热喷涂和微弧氧化制备的钛复合涂层的性能","authors":"C-C. Huang, HM Li, DH Li, SY Lin","doi":"10.1177/2633366X20974686","DOIUrl":null,"url":null,"abstract":"The development of composite coatings essential to improve the wear and corrosion resistances of the materials employed in numerous applications, such as automobile, chemical, medicine, construction, aerospace, and biomedical industries. In this study, we presented a double-layer coating technique, which consisted of a thermal-sprayed titanium (Ti) layer and a micro-arc oxidation (MAO) film on AISI 1020 steel. The effect of the composite coatings (Ti/MAO) on wear and corrosion resistance was investigated. To obtain a coating thickness from 250 µm to 450 µm, the prepared specimens were coated with Ti (99.9% pure) by arc spraying. Then, the Ti/MAO films were deposited on Ti coatings. The current density of MAO was fixed at 35 A/dm2, the voltages were 250, 300, 350, 400, and 450 V, and the duration of the MAO process was 10 min, Measurements of film thickness, microstructure, microhardness, X-ray diffractometry analysis, and scanning electron microscopic observation were performed for determining the characteristics of the composite coatings (Ti/MAO). Potentiodynamic polarization curves were used to compare the corrosion resistance of these composite coatings. A ball-on-disc wear test, using an oscillation friction wear tester, was carried out at room temperature according to the ASTM G99 standard to determine the wear resistance. Among all the specimens, Ti/MAO (400 V) had the greatest hardness, lowest friction coefficient, least weight loss, and longest sliding distance. The sliding distance of Ti/MAO (400 V) was about 1.7 times higher than those of Ti. The open-circuit potential of Ti/MAO (400 V) was about 1.7 times better than those of Ti. The corrosion currents of Ti/MAO (250 V) and Ti/MAO (400 V) were decreased by MAO about 95% and 92%, respectively. Although the corrosion current of Ti/MAO (400 V) was higher than that of Ti/MAO (250 V), Ti/MAO (400 V) had better effects in other tests. According to the results, Ti/MAO (400 V) presented the best performance among all the specimens and provided improved protection to both Ti and substrate.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The performance of titanium composite coatings obtained through thermal spraying and microarc oxidation\",\"authors\":\"C-C. Huang, HM Li, DH Li, SY Lin\",\"doi\":\"10.1177/2633366X20974686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of composite coatings essential to improve the wear and corrosion resistances of the materials employed in numerous applications, such as automobile, chemical, medicine, construction, aerospace, and biomedical industries. In this study, we presented a double-layer coating technique, which consisted of a thermal-sprayed titanium (Ti) layer and a micro-arc oxidation (MAO) film on AISI 1020 steel. The effect of the composite coatings (Ti/MAO) on wear and corrosion resistance was investigated. To obtain a coating thickness from 250 µm to 450 µm, the prepared specimens were coated with Ti (99.9% pure) by arc spraying. Then, the Ti/MAO films were deposited on Ti coatings. The current density of MAO was fixed at 35 A/dm2, the voltages were 250, 300, 350, 400, and 450 V, and the duration of the MAO process was 10 min, Measurements of film thickness, microstructure, microhardness, X-ray diffractometry analysis, and scanning electron microscopic observation were performed for determining the characteristics of the composite coatings (Ti/MAO). Potentiodynamic polarization curves were used to compare the corrosion resistance of these composite coatings. A ball-on-disc wear test, using an oscillation friction wear tester, was carried out at room temperature according to the ASTM G99 standard to determine the wear resistance. Among all the specimens, Ti/MAO (400 V) had the greatest hardness, lowest friction coefficient, least weight loss, and longest sliding distance. The sliding distance of Ti/MAO (400 V) was about 1.7 times higher than those of Ti. The open-circuit potential of Ti/MAO (400 V) was about 1.7 times better than those of Ti. The corrosion currents of Ti/MAO (250 V) and Ti/MAO (400 V) were decreased by MAO about 95% and 92%, respectively. Although the corrosion current of Ti/MAO (400 V) was higher than that of Ti/MAO (250 V), Ti/MAO (400 V) had better effects in other tests. According to the results, Ti/MAO (400 V) presented the best performance among all the specimens and provided improved protection to both Ti and substrate.\",\"PeriodicalId\":10608,\"journal\":{\"name\":\"Composites and Advanced Materials\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2633366X20974686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20974686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

复合涂层的发展对于提高汽车、化工、医药、建筑、航空航天和生物医学等众多应用中所用材料的耐磨损和耐腐蚀性至关重要。为了获得250µm ~ 450µm的涂层厚度,采用电弧喷涂方法对制备好的试样进行了99.9%纯度的Ti涂层。利用动电位极化曲线比较了复合镀层的耐蚀性。根据ASTM G99标准,在室温下使用振荡摩擦磨损试验机进行球盘磨损试验,以确定耐磨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The performance of titanium composite coatings obtained through thermal spraying and microarc oxidation
The development of composite coatings essential to improve the wear and corrosion resistances of the materials employed in numerous applications, such as automobile, chemical, medicine, construction, aerospace, and biomedical industries. In this study, we presented a double-layer coating technique, which consisted of a thermal-sprayed titanium (Ti) layer and a micro-arc oxidation (MAO) film on AISI 1020 steel. The effect of the composite coatings (Ti/MAO) on wear and corrosion resistance was investigated. To obtain a coating thickness from 250 µm to 450 µm, the prepared specimens were coated with Ti (99.9% pure) by arc spraying. Then, the Ti/MAO films were deposited on Ti coatings. The current density of MAO was fixed at 35 A/dm2, the voltages were 250, 300, 350, 400, and 450 V, and the duration of the MAO process was 10 min, Measurements of film thickness, microstructure, microhardness, X-ray diffractometry analysis, and scanning electron microscopic observation were performed for determining the characteristics of the composite coatings (Ti/MAO). Potentiodynamic polarization curves were used to compare the corrosion resistance of these composite coatings. A ball-on-disc wear test, using an oscillation friction wear tester, was carried out at room temperature according to the ASTM G99 standard to determine the wear resistance. Among all the specimens, Ti/MAO (400 V) had the greatest hardness, lowest friction coefficient, least weight loss, and longest sliding distance. The sliding distance of Ti/MAO (400 V) was about 1.7 times higher than those of Ti. The open-circuit potential of Ti/MAO (400 V) was about 1.7 times better than those of Ti. The corrosion currents of Ti/MAO (250 V) and Ti/MAO (400 V) were decreased by MAO about 95% and 92%, respectively. Although the corrosion current of Ti/MAO (400 V) was higher than that of Ti/MAO (250 V), Ti/MAO (400 V) had better effects in other tests. According to the results, Ti/MAO (400 V) presented the best performance among all the specimens and provided improved protection to both Ti and substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信