I. Walker, M. Montaño, Ronald S. Lankone, D. Fairbrother, P. L. Ferguson
{"title":"碳纳米管负载和环境应力对环氧树脂和聚碳酸酯纳米复合材料中聚合物相关化学物质浸出的影响","authors":"I. Walker, M. Montaño, Ronald S. Lankone, D. Fairbrother, P. L. Ferguson","doi":"10.1071/en21043","DOIUrl":null,"url":null,"abstract":"Nanoparticles such as carbon nanotubes are increasingly added to polymer matrices to improve tensile strength and electrical and thermal conductivity, and to reduce gas permeability. During use and after disposal, these plastic nanocomposites (PNCs) are degraded into microplastics by physical and chemical processes including mechanical abrasion, UV light exposure, hydrolysis and oxidation. Such polymers have the potential to enter aquatic environments and release potentially hazardous polymer-associated chemicals and transformation products. This work identifies and quantifies polymer-associated chemicals leached from polymers and nanocomposites during simulated environmental exposure. Epoxy and polycarbonate PNCs containing single-walled carbon nanotube (SWCNT) loadings ranging from 0 to 1 wt-% were exposed to water for 5 days, and the release of the chemicals bisphenol A (BPA) and 4-tert-butylphenol (TBP) was measured. The role of UV exposure, pH, temperature and natural organic matter in regulating chemical release was also investigated. Temperature, pH and UV light were found to be the most significant factors influencing release of TBP and BPA from PNCs. Additionally, increasing carbon nanotube loading in both polycarbonate and epoxy composites was found to decrease the release of these phenolic chemicals. A 0.3% higher SWCNT loading decreased the release of BPA 45 18%, and a 1 % SWCNT loading decreased chemical release from epoxy by 48 26% for BPA and 58 8% for TBP. This information provides important data that can be used to help assess the risks posed by SWCNT polymer nanocomposites in aqueous environments, particularly as they age and are transformed.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":"3 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Influence of CNT loading and environmental stressors on leaching of polymer-associated chemicals from epoxy and polycarbonate nanocomposites\",\"authors\":\"I. Walker, M. Montaño, Ronald S. Lankone, D. Fairbrother, P. L. Ferguson\",\"doi\":\"10.1071/en21043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles such as carbon nanotubes are increasingly added to polymer matrices to improve tensile strength and electrical and thermal conductivity, and to reduce gas permeability. During use and after disposal, these plastic nanocomposites (PNCs) are degraded into microplastics by physical and chemical processes including mechanical abrasion, UV light exposure, hydrolysis and oxidation. Such polymers have the potential to enter aquatic environments and release potentially hazardous polymer-associated chemicals and transformation products. This work identifies and quantifies polymer-associated chemicals leached from polymers and nanocomposites during simulated environmental exposure. Epoxy and polycarbonate PNCs containing single-walled carbon nanotube (SWCNT) loadings ranging from 0 to 1 wt-% were exposed to water for 5 days, and the release of the chemicals bisphenol A (BPA) and 4-tert-butylphenol (TBP) was measured. The role of UV exposure, pH, temperature and natural organic matter in regulating chemical release was also investigated. Temperature, pH and UV light were found to be the most significant factors influencing release of TBP and BPA from PNCs. Additionally, increasing carbon nanotube loading in both polycarbonate and epoxy composites was found to decrease the release of these phenolic chemicals. A 0.3% higher SWCNT loading decreased the release of BPA 45 18%, and a 1 % SWCNT loading decreased chemical release from epoxy by 48 26% for BPA and 58 8% for TBP. This information provides important data that can be used to help assess the risks posed by SWCNT polymer nanocomposites in aqueous environments, particularly as they age and are transformed.\",\"PeriodicalId\":11714,\"journal\":{\"name\":\"Environmental Chemistry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/en21043\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/en21043","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Influence of CNT loading and environmental stressors on leaching of polymer-associated chemicals from epoxy and polycarbonate nanocomposites
Nanoparticles such as carbon nanotubes are increasingly added to polymer matrices to improve tensile strength and electrical and thermal conductivity, and to reduce gas permeability. During use and after disposal, these plastic nanocomposites (PNCs) are degraded into microplastics by physical and chemical processes including mechanical abrasion, UV light exposure, hydrolysis and oxidation. Such polymers have the potential to enter aquatic environments and release potentially hazardous polymer-associated chemicals and transformation products. This work identifies and quantifies polymer-associated chemicals leached from polymers and nanocomposites during simulated environmental exposure. Epoxy and polycarbonate PNCs containing single-walled carbon nanotube (SWCNT) loadings ranging from 0 to 1 wt-% were exposed to water for 5 days, and the release of the chemicals bisphenol A (BPA) and 4-tert-butylphenol (TBP) was measured. The role of UV exposure, pH, temperature and natural organic matter in regulating chemical release was also investigated. Temperature, pH and UV light were found to be the most significant factors influencing release of TBP and BPA from PNCs. Additionally, increasing carbon nanotube loading in both polycarbonate and epoxy composites was found to decrease the release of these phenolic chemicals. A 0.3% higher SWCNT loading decreased the release of BPA 45 18%, and a 1 % SWCNT loading decreased chemical release from epoxy by 48 26% for BPA and 58 8% for TBP. This information provides important data that can be used to help assess the risks posed by SWCNT polymer nanocomposites in aqueous environments, particularly as they age and are transformed.
期刊介绍:
Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged.
While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding.
Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited.
Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.