复域上Jacobi多项式的一致渐近展开式

R. Wong, Yuqiu Zhao
{"title":"复域上Jacobi多项式的一致渐近展开式","authors":"R. Wong, Yuqiu Zhao","doi":"10.1098/rspa.2004.1296","DOIUrl":null,"url":null,"abstract":"An asymptotic formula is found that links the behaviour of the Jacobi polynomial Pnα,β)(z) in the interval of orthogonality [–1,1] with that outside the interval. The two infinite series involved in this formula are shown to be exponentially improved asymptotic expansions. The method used in this paper can also be adopted in other cases of orthogonal polynomials such as Hermite and Laguerre.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"4 1","pages":"2569 - 2586"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Uniform asymptotic expansion of the Jacobi polynomials in a complex domain\",\"authors\":\"R. Wong, Yuqiu Zhao\",\"doi\":\"10.1098/rspa.2004.1296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An asymptotic formula is found that links the behaviour of the Jacobi polynomial Pnα,β)(z) in the interval of orthogonality [–1,1] with that outside the interval. The two infinite series involved in this formula are shown to be exponentially improved asymptotic expansions. The method used in this paper can also be adopted in other cases of orthogonal polynomials such as Hermite and Laguerre.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"4 1\",\"pages\":\"2569 - 2586\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在正交性区间[- 1,1]内的雅可比多项式Pnα,β)(z)的行为与区间外的行为之间建立了一个渐近公式。这个公式所涉及的两个无穷级数被证明是指数改进的渐近展开式。本文所采用的方法也适用于其他正交多项式的情况,如Hermite和Laguerre。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform asymptotic expansion of the Jacobi polynomials in a complex domain
An asymptotic formula is found that links the behaviour of the Jacobi polynomial Pnα,β)(z) in the interval of orthogonality [–1,1] with that outside the interval. The two infinite series involved in this formula are shown to be exponentially improved asymptotic expansions. The method used in this paper can also be adopted in other cases of orthogonal polynomials such as Hermite and Laguerre.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信