基于社交物联网框架的面部表情识别方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Silvio Barra , Sanoar Hossain , Chiara Pero , Saiyed Umer
{"title":"基于社交物联网框架的面部表情识别方法","authors":"Silvio Barra ,&nbsp;Sanoar Hossain ,&nbsp;Chiara Pero ,&nbsp;Saiyed Umer","doi":"10.1016/j.bdr.2022.100353","DOIUrl":null,"url":null,"abstract":"<div><p>Social IoT<span> has become a sensitive topic in the last years, mainly due to the attraction of social networks and the related digital activities amongst the population. These techniques are gaining even more importance in the current period, in which digital tools are the only ones allowed to maintain social distancing due to the COVID-19 restrictions. In order to aid patients and elderly people in-home healthcare context, this article explores the usage of facial patient images and emotional detection. In this regard, a Social IoT approach is proposed, which is based on a camera connected home, allowing medical examinations at a distance by keeping posted the preferred contacts of the patient. A facial expression analysis is done to infer the patient's emotional state, thus communicating to the doctor and the emergency contacts any change in the patient's state (pain, suffering, etc.). The proposed facial expression recognition system consists of three main steps: during the image preprocessing phase<span>, face detection and normalization are performed; the feature extraction process involves the computation of discriminative patterns using the Spatial Pyramid Technique; finally, an expression recognition model is built using a multi-class linear Support Vector Machine classifier. The performance of the proposed system has been tested on two challenging benchmarks for facial expression recognition, namely KDEF and GENKI-4K, which show that the proposed system overcomes state-of-the-art methods.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Facial Expression Recognition Approach for Social IoT Frameworks\",\"authors\":\"Silvio Barra ,&nbsp;Sanoar Hossain ,&nbsp;Chiara Pero ,&nbsp;Saiyed Umer\",\"doi\":\"10.1016/j.bdr.2022.100353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Social IoT<span> has become a sensitive topic in the last years, mainly due to the attraction of social networks and the related digital activities amongst the population. These techniques are gaining even more importance in the current period, in which digital tools are the only ones allowed to maintain social distancing due to the COVID-19 restrictions. In order to aid patients and elderly people in-home healthcare context, this article explores the usage of facial patient images and emotional detection. In this regard, a Social IoT approach is proposed, which is based on a camera connected home, allowing medical examinations at a distance by keeping posted the preferred contacts of the patient. A facial expression analysis is done to infer the patient's emotional state, thus communicating to the doctor and the emergency contacts any change in the patient's state (pain, suffering, etc.). The proposed facial expression recognition system consists of three main steps: during the image preprocessing phase<span>, face detection and normalization are performed; the feature extraction process involves the computation of discriminative patterns using the Spatial Pyramid Technique; finally, an expression recognition model is built using a multi-class linear Support Vector Machine classifier. The performance of the proposed system has been tested on two challenging benchmarks for facial expression recognition, namely KDEF and GENKI-4K, which show that the proposed system overcomes state-of-the-art methods.</span></span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579622000478\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579622000478","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

社交物联网在过去几年已经成为一个敏感的话题,主要是由于社交网络和相关数字活动在人群中的吸引力。这些技术在当前时期变得更加重要,因为由于COVID-19的限制,数字工具是唯一允许保持社交距离的工具。为了帮助患者和老年人在家庭医疗保健背景下,本文探讨了面部患者图像和情绪检测的使用。为此,提出了以连接家庭的摄像头为基础,通过公布患者的首选联系人,远距离进行医疗检查的社会物联网方法。通过面部表情分析来推断患者的情绪状态,从而向医生和急救人员传达患者状态(疼痛、痛苦等)的任何变化。所提出的面部表情识别系统包括三个主要步骤:在图像预处理阶段,进行人脸检测和归一化;特征提取过程包括利用空间金字塔技术计算判别模式;最后,利用多类线性支持向量机分类器建立表情识别模型。所提出的系统的性能已经在两个具有挑战性的面部表情识别基准上进行了测试,即KDEF和GENKI-4K,这表明所提出的系统克服了最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Facial Expression Recognition Approach for Social IoT Frameworks

Social IoT has become a sensitive topic in the last years, mainly due to the attraction of social networks and the related digital activities amongst the population. These techniques are gaining even more importance in the current period, in which digital tools are the only ones allowed to maintain social distancing due to the COVID-19 restrictions. In order to aid patients and elderly people in-home healthcare context, this article explores the usage of facial patient images and emotional detection. In this regard, a Social IoT approach is proposed, which is based on a camera connected home, allowing medical examinations at a distance by keeping posted the preferred contacts of the patient. A facial expression analysis is done to infer the patient's emotional state, thus communicating to the doctor and the emergency contacts any change in the patient's state (pain, suffering, etc.). The proposed facial expression recognition system consists of three main steps: during the image preprocessing phase, face detection and normalization are performed; the feature extraction process involves the computation of discriminative patterns using the Spatial Pyramid Technique; finally, an expression recognition model is built using a multi-class linear Support Vector Machine classifier. The performance of the proposed system has been tested on two challenging benchmarks for facial expression recognition, namely KDEF and GENKI-4K, which show that the proposed system overcomes state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信