{"title":"六相感应电动机的设计与实际实现","authors":"Samuel E. Iduh, Silas E. Omugbe","doi":"10.37121/jase.v3i1.95","DOIUrl":null,"url":null,"abstract":"This thesis presents a re-designed conventional three phase 5-hp squirrel cage, 4-pole, 48 slots induction motor to a six-phase induction motor (SPIM). It also presents the in-depth of a single layer winding of a three-phase motor that was re-design to the six-phase split winding layout which was practically explained to the understanding of both the engineers and the technicians who normally find it difficult with windings of electrical machines. The optimized re-designed SPIM is presented in the MATLAB/Simulink environment to perform a comparative assessment of the different phase loss scenarios of the six-phase configuration with respect to the six-phase healthy case and its conventional three-phase induction motor. The result shows a comparative benefit of the six-phase induction motor over the three-phase induction motor; in such that in the near future because of its effective way to provide a higher reliability and sustainability under the loss of phase/phases condition it will be practically applied in the power driven devices/machines like in the area of Electric Vehicles, etc.","PeriodicalId":92218,"journal":{"name":"International journal of advances in science, engineering and technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The design and practical implementation of a six-phase induction motor\",\"authors\":\"Samuel E. Iduh, Silas E. Omugbe\",\"doi\":\"10.37121/jase.v3i1.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This thesis presents a re-designed conventional three phase 5-hp squirrel cage, 4-pole, 48 slots induction motor to a six-phase induction motor (SPIM). It also presents the in-depth of a single layer winding of a three-phase motor that was re-design to the six-phase split winding layout which was practically explained to the understanding of both the engineers and the technicians who normally find it difficult with windings of electrical machines. The optimized re-designed SPIM is presented in the MATLAB/Simulink environment to perform a comparative assessment of the different phase loss scenarios of the six-phase configuration with respect to the six-phase healthy case and its conventional three-phase induction motor. The result shows a comparative benefit of the six-phase induction motor over the three-phase induction motor; in such that in the near future because of its effective way to provide a higher reliability and sustainability under the loss of phase/phases condition it will be practically applied in the power driven devices/machines like in the area of Electric Vehicles, etc.\",\"PeriodicalId\":92218,\"journal\":{\"name\":\"International journal of advances in science, engineering and technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of advances in science, engineering and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37121/jase.v3i1.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of advances in science, engineering and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37121/jase.v3i1.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The design and practical implementation of a six-phase induction motor
This thesis presents a re-designed conventional three phase 5-hp squirrel cage, 4-pole, 48 slots induction motor to a six-phase induction motor (SPIM). It also presents the in-depth of a single layer winding of a three-phase motor that was re-design to the six-phase split winding layout which was practically explained to the understanding of both the engineers and the technicians who normally find it difficult with windings of electrical machines. The optimized re-designed SPIM is presented in the MATLAB/Simulink environment to perform a comparative assessment of the different phase loss scenarios of the six-phase configuration with respect to the six-phase healthy case and its conventional three-phase induction motor. The result shows a comparative benefit of the six-phase induction motor over the three-phase induction motor; in such that in the near future because of its effective way to provide a higher reliability and sustainability under the loss of phase/phases condition it will be practically applied in the power driven devices/machines like in the area of Electric Vehicles, etc.