Mohd Saiful Dzulkefly Zan, M. Mokhtar, M. Elgaud, A. Bakar, N. Arsad, M. Mahdi
{"title":"差分跨频谱BOTDR中提高布里渊频率精度和空间分辨率的脉冲编码技术","authors":"Mohd Saiful Dzulkefly Zan, M. Mokhtar, M. Elgaud, A. Bakar, N. Arsad, M. Mahdi","doi":"10.1109/ICP46580.2020.9206492","DOIUrl":null,"url":null,"abstract":"We propose a novel technique to deploy Golay code in our previously reported differential cross-spectrum BOTDR (DCS-BOTDR) fiber sensor technique to improve the Brillouin frequency shift (BFS) resolution measurement. The conventional DCS-BOTDR uses two pulsed probes having slightly different in pulse duration; the duration difference between the pulses enables sub-meter spatial resolution. In the new coded DCS-BOTDR, the narrow pulse was modulated with Golay code via intensity modulation scheme to achieve higher BFS resolution and at the same time attain sub-meter spatial resolution. By using 8 bits of Golay code in the proof-of-concept experiment, we have achieved 40 cm spatial resolution and 3.47 MHz Brillouin frequency accuracy in measuring a 1280 m fiber.","PeriodicalId":6758,"journal":{"name":"2020 IEEE 8th International Conference on Photonics (ICP)","volume":"4 1","pages":"11-12"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pulse Coding Technique in Differential Cross-Spectrum BOTDR for Improving the Brillouin Frequency Accuracy and Spatial Resolution\",\"authors\":\"Mohd Saiful Dzulkefly Zan, M. Mokhtar, M. Elgaud, A. Bakar, N. Arsad, M. Mahdi\",\"doi\":\"10.1109/ICP46580.2020.9206492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel technique to deploy Golay code in our previously reported differential cross-spectrum BOTDR (DCS-BOTDR) fiber sensor technique to improve the Brillouin frequency shift (BFS) resolution measurement. The conventional DCS-BOTDR uses two pulsed probes having slightly different in pulse duration; the duration difference between the pulses enables sub-meter spatial resolution. In the new coded DCS-BOTDR, the narrow pulse was modulated with Golay code via intensity modulation scheme to achieve higher BFS resolution and at the same time attain sub-meter spatial resolution. By using 8 bits of Golay code in the proof-of-concept experiment, we have achieved 40 cm spatial resolution and 3.47 MHz Brillouin frequency accuracy in measuring a 1280 m fiber.\",\"PeriodicalId\":6758,\"journal\":{\"name\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"volume\":\"4 1\",\"pages\":\"11-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICP46580.2020.9206492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Photonics (ICP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICP46580.2020.9206492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pulse Coding Technique in Differential Cross-Spectrum BOTDR for Improving the Brillouin Frequency Accuracy and Spatial Resolution
We propose a novel technique to deploy Golay code in our previously reported differential cross-spectrum BOTDR (DCS-BOTDR) fiber sensor technique to improve the Brillouin frequency shift (BFS) resolution measurement. The conventional DCS-BOTDR uses two pulsed probes having slightly different in pulse duration; the duration difference between the pulses enables sub-meter spatial resolution. In the new coded DCS-BOTDR, the narrow pulse was modulated with Golay code via intensity modulation scheme to achieve higher BFS resolution and at the same time attain sub-meter spatial resolution. By using 8 bits of Golay code in the proof-of-concept experiment, we have achieved 40 cm spatial resolution and 3.47 MHz Brillouin frequency accuracy in measuring a 1280 m fiber.