{"title":"HTN-POP混合规划器控制知识的学习","authors":"S. Fernández, R. Aler, D. Borrajo","doi":"10.1109/ICMLC.2002.1175368","DOIUrl":null,"url":null,"abstract":"In this paper we present a learning method that is able to automatically acquire control knowledge for a hybrid HTN-POP planner called HYBIS. HYBIS decomposes a problem in subproblems using either a default method or a user-defined decomposition method. Then, at each level of abstraction, it generates a plan at that level using a POCL (Partial Order Causal Link) planning technique. Our learning approach builds on HAMLET, a system that learns control knowledge for a total order non-linear planner (PRODIGY4.0). In this paper, we focus on the operator selection problem for the POP component of HYBIS, which is very important for efficiency purposes.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"94 1","pages":"1899-1904 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On learning control knowledge for a HTN-POP hybrid planner\",\"authors\":\"S. Fernández, R. Aler, D. Borrajo\",\"doi\":\"10.1109/ICMLC.2002.1175368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a learning method that is able to automatically acquire control knowledge for a hybrid HTN-POP planner called HYBIS. HYBIS decomposes a problem in subproblems using either a default method or a user-defined decomposition method. Then, at each level of abstraction, it generates a plan at that level using a POCL (Partial Order Causal Link) planning technique. Our learning approach builds on HAMLET, a system that learns control knowledge for a total order non-linear planner (PRODIGY4.0). In this paper, we focus on the operator selection problem for the POP component of HYBIS, which is very important for efficiency purposes.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"94 1\",\"pages\":\"1899-1904 vol.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1175368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1175368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On learning control knowledge for a HTN-POP hybrid planner
In this paper we present a learning method that is able to automatically acquire control knowledge for a hybrid HTN-POP planner called HYBIS. HYBIS decomposes a problem in subproblems using either a default method or a user-defined decomposition method. Then, at each level of abstraction, it generates a plan at that level using a POCL (Partial Order Causal Link) planning technique. Our learning approach builds on HAMLET, a system that learns control knowledge for a total order non-linear planner (PRODIGY4.0). In this paper, we focus on the operator selection problem for the POP component of HYBIS, which is very important for efficiency purposes.