非瑟酮对胶质瘤细胞增殖和凋亡的影响

F. Pak, Pinar Oztopcu-Vatan
{"title":"非瑟酮对胶质瘤细胞增殖和凋亡的影响","authors":"F. Pak, Pinar Oztopcu-Vatan","doi":"10.1515/znc-2019-0098","DOIUrl":null,"url":null,"abstract":"Abstract This research investigated the antiproliferative effects of 1–500 μM fisetin in T98G and BEAS-2B cells by MTT assay. The IC50 of fisetin in T98G cells for 24 and 48 h were 93 and 75 μM, respectively. Apoptotic alterations of fisetin-treated T98G cells were observed by transmission electron microscopy. BEAS-2B was then used in comparison to T98G cells to determine the cytotoxic effects of fisetin. The IC50 of fisetin for 24 and 48 h were recorded as 270 and 90 μM in BEAS-2B cells, respectively. Different concentrations of fisetin were selected to determine the apoptotic and necrotic effects. Consequently, fisetin was determined to have more apoptotic effects in T98G than BEAS-2B cells, dose- and time-dependently. Moreover, fisetin was found to have cytotoxicity at lower doses in T98G cells compared to carmustine, as positive control. CASPASE 3, CASPASE 9, CASPASE 8, and BAX expressions were increased by the selected fisetin doses of 25 and 50 μM, while that of BCL-2 and survivin was reduced in T98G cells. These results will serve as an essential basis of future in vitro and in vivo studies, in the continuous search for alternative treatment agents for gliomas.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"143 1","pages":"295 - 302"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fisetin effects on cell proliferation and apoptosis in glioma cells\",\"authors\":\"F. Pak, Pinar Oztopcu-Vatan\",\"doi\":\"10.1515/znc-2019-0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research investigated the antiproliferative effects of 1–500 μM fisetin in T98G and BEAS-2B cells by MTT assay. The IC50 of fisetin in T98G cells for 24 and 48 h were 93 and 75 μM, respectively. Apoptotic alterations of fisetin-treated T98G cells were observed by transmission electron microscopy. BEAS-2B was then used in comparison to T98G cells to determine the cytotoxic effects of fisetin. The IC50 of fisetin for 24 and 48 h were recorded as 270 and 90 μM in BEAS-2B cells, respectively. Different concentrations of fisetin were selected to determine the apoptotic and necrotic effects. Consequently, fisetin was determined to have more apoptotic effects in T98G than BEAS-2B cells, dose- and time-dependently. Moreover, fisetin was found to have cytotoxicity at lower doses in T98G cells compared to carmustine, as positive control. CASPASE 3, CASPASE 9, CASPASE 8, and BAX expressions were increased by the selected fisetin doses of 25 and 50 μM, while that of BCL-2 and survivin was reduced in T98G cells. These results will serve as an essential basis of future in vitro and in vivo studies, in the continuous search for alternative treatment agents for gliomas.\",\"PeriodicalId\":23894,\"journal\":{\"name\":\"Zeitschrift für Naturforschung C\",\"volume\":\"143 1\",\"pages\":\"295 - 302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2019-0098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znc-2019-0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要采用MTT法研究1-500 μM非瑟酮对T98G和BEAS-2B细胞的抗增殖作用。非瑟酮对T98G细胞作用24和48 h的IC50分别为93和75 μM。透射电镜观察非司汀对T98G细胞凋亡的影响。然后将BEAS-2B与T98G细胞进行比较,以确定非赛特酮的细胞毒性作用。非瑟酮作用于BEAS-2B细胞24 h和48 h的IC50分别为270 μM和90 μM。选择不同浓度的非瑟酮,观察其对细胞凋亡和坏死的影响。因此,非西汀对T98G细胞的凋亡作用强于BEAS-2B细胞,且具有剂量和时间依赖性。此外,与阳性对照卡莫司汀相比,在T98G细胞中发现非瑟汀在较低剂量下具有细胞毒性。25 μM和50 μM非瑟酮可提高T98G细胞中CASPASE 3、CASPASE 9、CASPASE 8和BAX的表达,降低BCL-2和survivin的表达。这些结果将作为未来在体外和体内研究的重要基础,在不断寻找替代治疗胶质瘤的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fisetin effects on cell proliferation and apoptosis in glioma cells
Abstract This research investigated the antiproliferative effects of 1–500 μM fisetin in T98G and BEAS-2B cells by MTT assay. The IC50 of fisetin in T98G cells for 24 and 48 h were 93 and 75 μM, respectively. Apoptotic alterations of fisetin-treated T98G cells were observed by transmission electron microscopy. BEAS-2B was then used in comparison to T98G cells to determine the cytotoxic effects of fisetin. The IC50 of fisetin for 24 and 48 h were recorded as 270 and 90 μM in BEAS-2B cells, respectively. Different concentrations of fisetin were selected to determine the apoptotic and necrotic effects. Consequently, fisetin was determined to have more apoptotic effects in T98G than BEAS-2B cells, dose- and time-dependently. Moreover, fisetin was found to have cytotoxicity at lower doses in T98G cells compared to carmustine, as positive control. CASPASE 3, CASPASE 9, CASPASE 8, and BAX expressions were increased by the selected fisetin doses of 25 and 50 μM, while that of BCL-2 and survivin was reduced in T98G cells. These results will serve as an essential basis of future in vitro and in vivo studies, in the continuous search for alternative treatment agents for gliomas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信