条件期望项的降维技术

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Eliana Christou
{"title":"条件期望项的降维技术","authors":"Eliana Christou","doi":"10.1080/02331888.2023.2236745","DOIUrl":null,"url":null,"abstract":"Marginalizing the importance of characterizing tail events can lead to catastrophic repercussions. Look no further than examples from meteorology and climatology (polar reversals, natural disasters), economics (2008 subprime mortgage crisis), or even medical-diagnostics (low/high risk patients in survival analysis). Investigating these events can become even more challenging when working with high-dimensional data, making it necessary to use dimension reduction techniques. Although research has recently turned to dimension reduction techniques that use conditional quantiles, there is a surprisingly limited amount of research dedicated to the underexplored research area of expectile regression (ER). Therefore, we present the first comprehensive work about dimension reduction techniques for conditional expectiles. Specifically, we introduce the central expectile subspace, i.e., the space that spans the fewest linear combinations of the predictors that contain all the information about the response that is available from the conditional expectile. We then introduce a nonlinear extension of the proposed methodology that extracts nonlinear features. The performance of the algorithms are demonstrated through extensive simulation examples and a real data application. The results suggest that ER is an effective tool for describing tail events and is a competitive alternative to quantile regression.","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"28 1","pages":"960 - 985"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension reduction techniques for conditional expectiles\",\"authors\":\"Eliana Christou\",\"doi\":\"10.1080/02331888.2023.2236745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marginalizing the importance of characterizing tail events can lead to catastrophic repercussions. Look no further than examples from meteorology and climatology (polar reversals, natural disasters), economics (2008 subprime mortgage crisis), or even medical-diagnostics (low/high risk patients in survival analysis). Investigating these events can become even more challenging when working with high-dimensional data, making it necessary to use dimension reduction techniques. Although research has recently turned to dimension reduction techniques that use conditional quantiles, there is a surprisingly limited amount of research dedicated to the underexplored research area of expectile regression (ER). Therefore, we present the first comprehensive work about dimension reduction techniques for conditional expectiles. Specifically, we introduce the central expectile subspace, i.e., the space that spans the fewest linear combinations of the predictors that contain all the information about the response that is available from the conditional expectile. We then introduce a nonlinear extension of the proposed methodology that extracts nonlinear features. The performance of the algorithms are demonstrated through extensive simulation examples and a real data application. The results suggest that ER is an effective tool for describing tail events and is a competitive alternative to quantile regression.\",\"PeriodicalId\":54358,\"journal\":{\"name\":\"Statistics\",\"volume\":\"28 1\",\"pages\":\"960 - 985\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2023.2236745\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331888.2023.2236745","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

忽略描述尾部事件的重要性可能会导致灾难性的后果。看看气象学和气候学(极地倒转、自然灾害)、经济学(2008年次贷危机)甚至医学诊断(生存分析中的低/高风险患者)的例子就知道了。在处理高维数据时,调查这些事件可能会变得更具挑战性,因此有必要使用降维技术。尽管最近的研究转向了使用条件分位数的降维技术,但对于期望回归(ER)这一尚未开发的研究领域的研究却非常有限。因此,我们提出了第一个关于条件谓词降维技术的综合工作。具体地说,我们引入了中心期望子空间,即跨越最小线性组合的预测器的空间,这些预测器包含了从条件期望中获得的关于响应的所有信息。然后,我们介绍了所提出的方法的非线性扩展,以提取非线性特征。通过大量的仿真实例和实际数据应用验证了算法的性能。结果表明,ER是描述尾部事件的有效工具,是分位数回归的一个有竞争力的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension reduction techniques for conditional expectiles
Marginalizing the importance of characterizing tail events can lead to catastrophic repercussions. Look no further than examples from meteorology and climatology (polar reversals, natural disasters), economics (2008 subprime mortgage crisis), or even medical-diagnostics (low/high risk patients in survival analysis). Investigating these events can become even more challenging when working with high-dimensional data, making it necessary to use dimension reduction techniques. Although research has recently turned to dimension reduction techniques that use conditional quantiles, there is a surprisingly limited amount of research dedicated to the underexplored research area of expectile regression (ER). Therefore, we present the first comprehensive work about dimension reduction techniques for conditional expectiles. Specifically, we introduce the central expectile subspace, i.e., the space that spans the fewest linear combinations of the predictors that contain all the information about the response that is available from the conditional expectile. We then introduce a nonlinear extension of the proposed methodology that extracts nonlinear features. The performance of the algorithms are demonstrated through extensive simulation examples and a real data application. The results suggest that ER is an effective tool for describing tail events and is a competitive alternative to quantile regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics
Statistics 数学-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
59
审稿时长
12 months
期刊介绍: Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信