O. Gasymov, O. Alekperov, Arzu H. Aydemirova, N. Kamilova, R. Aslanov, A. Bayramov, A. Kerimova
{"title":"人血在纳米氧化锌表面增强拉曼散射","authors":"O. Gasymov, O. Alekperov, Arzu H. Aydemirova, N. Kamilova, R. Aslanov, A. Bayramov, A. Kerimova","doi":"10.1002/PSSC.201600155","DOIUrl":null,"url":null,"abstract":"Surface enhanced Raman spectroscopy (SERS) owing to the greatly enhanced sensitivity is widely utilized to study biological molecules in various states. However, the enhancement in SERS is not uniform throughout the spectra. As a result, the strong enhancement of some transitions in SER overshadows weak Raman peaks that are very important to characterize the molecules. Here we show the SERS investigation for whole human blood on a nanostructured ZnO surface. The result indicates that despite the moderate enhancement (20–30 fold), all spectral components of the blood demonstrated in regular Raman are detected in SERS on ZnO. Moreover, SERS on ZnO identifies some components of the blood that are not easily accessible to regular Raman spectroscopy. Data indicate that SERS on ZnO is a valuable tool to investigate the whole blood for diagnosis of various human diseases.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface enhanced Raman scattering of whole human blood on nanostructured ZnO surface\",\"authors\":\"O. Gasymov, O. Alekperov, Arzu H. Aydemirova, N. Kamilova, R. Aslanov, A. Bayramov, A. Kerimova\",\"doi\":\"10.1002/PSSC.201600155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface enhanced Raman spectroscopy (SERS) owing to the greatly enhanced sensitivity is widely utilized to study biological molecules in various states. However, the enhancement in SERS is not uniform throughout the spectra. As a result, the strong enhancement of some transitions in SER overshadows weak Raman peaks that are very important to characterize the molecules. Here we show the SERS investigation for whole human blood on a nanostructured ZnO surface. The result indicates that despite the moderate enhancement (20–30 fold), all spectral components of the blood demonstrated in regular Raman are detected in SERS on ZnO. Moreover, SERS on ZnO identifies some components of the blood that are not easily accessible to regular Raman spectroscopy. Data indicate that SERS on ZnO is a valuable tool to investigate the whole blood for diagnosis of various human diseases.\",\"PeriodicalId\":20065,\"journal\":{\"name\":\"Physica Status Solidi (c)\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi (c)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/PSSC.201600155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201600155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface enhanced Raman scattering of whole human blood on nanostructured ZnO surface
Surface enhanced Raman spectroscopy (SERS) owing to the greatly enhanced sensitivity is widely utilized to study biological molecules in various states. However, the enhancement in SERS is not uniform throughout the spectra. As a result, the strong enhancement of some transitions in SER overshadows weak Raman peaks that are very important to characterize the molecules. Here we show the SERS investigation for whole human blood on a nanostructured ZnO surface. The result indicates that despite the moderate enhancement (20–30 fold), all spectral components of the blood demonstrated in regular Raman are detected in SERS on ZnO. Moreover, SERS on ZnO identifies some components of the blood that are not easily accessible to regular Raman spectroscopy. Data indicate that SERS on ZnO is a valuable tool to investigate the whole blood for diagnosis of various human diseases.