肺炎- hiv共感染的同伦摄动方法

Nita H. Shah, Nisha Sheoran
{"title":"肺炎- hiv共感染的同伦摄动方法","authors":"Nita H. Shah, Nisha Sheoran","doi":"10.3390/foundations2040072","DOIUrl":null,"url":null,"abstract":"It is well known that HIV (human immunodeficiency virus) weakens the immune system of individuals, resulting in risk of other infections, such as pneumonia. The most frequent viral pneumonia seen in individuals infected with HIV is cytomegalovirus (CMV). In this paper, pneumonia–HIV co-infection is modeled through the formulation of a mathematical compartmental model consisting of nine compartments. Some of the basic properties of the model are established, such as the positivity, boundedness of the system, equilibrium points, and computation of the basic reproduction number. After obtaining the solution, the homotopy perturbation method (HPM) is applied, as it is known for its convergence properties. It is observed that the HPM gives an accurate analytical solution that indicates various important factors that are responsible for the spread of cytomegalovirus pneumonia in HIV-infected populations, and this is justified through a plot made by using MATLAB 2020a.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy Perturbation Method for Pneumonia–HIV Co-Infection\",\"authors\":\"Nita H. Shah, Nisha Sheoran\",\"doi\":\"10.3390/foundations2040072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that HIV (human immunodeficiency virus) weakens the immune system of individuals, resulting in risk of other infections, such as pneumonia. The most frequent viral pneumonia seen in individuals infected with HIV is cytomegalovirus (CMV). In this paper, pneumonia–HIV co-infection is modeled through the formulation of a mathematical compartmental model consisting of nine compartments. Some of the basic properties of the model are established, such as the positivity, boundedness of the system, equilibrium points, and computation of the basic reproduction number. After obtaining the solution, the homotopy perturbation method (HPM) is applied, as it is known for its convergence properties. It is observed that the HPM gives an accurate analytical solution that indicates various important factors that are responsible for the spread of cytomegalovirus pneumonia in HIV-infected populations, and this is justified through a plot made by using MATLAB 2020a.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations2040072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2040072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,艾滋病毒(人类免疫缺陷病毒)削弱了个人的免疫系统,导致其他感染的风险,如肺炎。在HIV感染者中最常见的病毒性肺炎是巨细胞病毒(CMV)。在本文中,肺炎- hiv合并感染通过一个由9个室组成的数学室模型的制定来建模。建立了该模型的一些基本性质,如系统的正性、有界性、平衡点和基本再现数的计算。在得到解后,应用同伦摄动法(HPM),因为它具有收敛性。观察到HPM给出了准确的分析解,指出了导致巨细胞病毒肺炎在hiv感染人群中传播的各种重要因素,并通过MATLAB 2020a绘制了一个图来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy Perturbation Method for Pneumonia–HIV Co-Infection
It is well known that HIV (human immunodeficiency virus) weakens the immune system of individuals, resulting in risk of other infections, such as pneumonia. The most frequent viral pneumonia seen in individuals infected with HIV is cytomegalovirus (CMV). In this paper, pneumonia–HIV co-infection is modeled through the formulation of a mathematical compartmental model consisting of nine compartments. Some of the basic properties of the model are established, such as the positivity, boundedness of the system, equilibrium points, and computation of the basic reproduction number. After obtaining the solution, the homotopy perturbation method (HPM) is applied, as it is known for its convergence properties. It is observed that the HPM gives an accurate analytical solution that indicates various important factors that are responsible for the spread of cytomegalovirus pneumonia in HIV-infected populations, and this is justified through a plot made by using MATLAB 2020a.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信