自动制备PEDOT: PSS薄膜的直写喷墨打印工艺的表征

IF 1 Q4 ENGINEERING, MANUFACTURING
Sara Morice, A. Sherehiy, Danming Wei, D. Popa
{"title":"自动制备PEDOT: PSS薄膜的直写喷墨打印工艺的表征","authors":"Sara Morice, A. Sherehiy, Danming Wei, D. Popa","doi":"10.1115/msec2022-85409","DOIUrl":null,"url":null,"abstract":"\n Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Direct Write Inkjet Printing Process for Automated Fabrication of PEDOT: PSS Thin Films\",\"authors\":\"Sara Morice, A. Sherehiy, Danming Wei, D. Popa\",\"doi\":\"10.1115/msec2022-85409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

直写喷墨打印是一种多功能的增材制造技术,允许制造从纳米到厘米尺度的多尺度结构。由于新型点胶工具的开发,这成为可能,可以控制和精确地沉积具有广泛粘度(1 - 50,000 mPas)的流体,以纳升体积为单位。因此,喷墨印刷已被公认为几种已建立的制造方法的潜在低成本替代方案,包括洁净室制造。在本文中,我们介绍了PEDOT: PSS聚合物油墨沉积打印过程的表征研究,该过程是在自动化,定制的直写喷墨系统的帮助下实现的。PSS是一种高导电性油墨,具有良好的成膜能力。因此,应用包括在触觉(触摸)传感器的柔性基板上印刷薄膜。采用田口实验设计(DOE)方法,对PEDOT:PSS油墨点胶参数进行了优化,研究了各参数对所得到的墨滴直径的影响。我们通过实验确定,具有最小厚度的印刷薄膜的期望结果与1)分配流体的最小体积和2)预处理步骤的存在直接相关,即对卡普顿衬底进行空气等离子体处理。结果表明,该方法制备出了最小直径为482 μm的油墨沉积层和厚度约为300 nm的薄膜,具有良好的重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the Direct Write Inkjet Printing Process for Automated Fabrication of PEDOT: PSS Thin Films
Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信