基于同态分析新技术的出院建议。

IF 0.8 4区 心理学 Q3 PSYCHOLOGY, MULTIDISCIPLINARY
Estudios De Psicologia Pub Date : 2017-01-01 Epub Date: 2016-03-28 DOI:10.1093/jamia/ocw014
Jacob S Calvert, Daniel A Price, Christopher W Barton, Uli K Chettipally, Ritankar Das
{"title":"基于同态分析新技术的出院建议。","authors":"Jacob S Calvert, Daniel A Price, Christopher W Barton, Uli K Chettipally, Ritankar Das","doi":"10.1093/jamia/ocw014","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We propose a computational framework for integrating diverse patient measurements into an aggregate health score and applying it to patient stability prediction.</p><p><strong>Materials and methods: </strong>We mapped retrospective patient data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II clinical database into a discrete multidimensional space, which was searched for measurement combinations and trends relevant to patient outcomes of interest. Patient trajectories through this space were then used to make outcome predictions. As a case study, we built AutoTriage, a patient stability prediction tool to be used for discharge recommendation.</p><p><strong>Results: </strong>AutoTriage correctly identified 3 times as many stabilizing patients as existing tools and achieved an accuracy of 92.9% (95% CI: 91.6-93.9%), while maintaining 94.5% specificity. Analysis of AutoTriage parameters revealed that interdependencies between risk factors comprised the majority of each patient stability score.</p><p><strong>Discussion: </strong>AutoTriage demonstrated an improvement in the sensitivity of existing stability prediction tools, while considering patient safety upon discharge. The relative contributions of risk factors indicated that time-series trends and measurement interdependencies are most important to stability prediction.</p><p><strong>Conclusion: </strong>Our results motivate the application of multidimensional analysis to other clinical problems and highlight the importance of risk factor trends and interdependencies in outcome prediction.</p>","PeriodicalId":55642,"journal":{"name":"Estudios De Psicologia","volume":"38 1","pages":"24-29"},"PeriodicalIF":0.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discharge recommendation based on a novel technique of homeostatic analysis.\",\"authors\":\"Jacob S Calvert, Daniel A Price, Christopher W Barton, Uli K Chettipally, Ritankar Das\",\"doi\":\"10.1093/jamia/ocw014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>We propose a computational framework for integrating diverse patient measurements into an aggregate health score and applying it to patient stability prediction.</p><p><strong>Materials and methods: </strong>We mapped retrospective patient data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II clinical database into a discrete multidimensional space, which was searched for measurement combinations and trends relevant to patient outcomes of interest. Patient trajectories through this space were then used to make outcome predictions. As a case study, we built AutoTriage, a patient stability prediction tool to be used for discharge recommendation.</p><p><strong>Results: </strong>AutoTriage correctly identified 3 times as many stabilizing patients as existing tools and achieved an accuracy of 92.9% (95% CI: 91.6-93.9%), while maintaining 94.5% specificity. Analysis of AutoTriage parameters revealed that interdependencies between risk factors comprised the majority of each patient stability score.</p><p><strong>Discussion: </strong>AutoTriage demonstrated an improvement in the sensitivity of existing stability prediction tools, while considering patient safety upon discharge. The relative contributions of risk factors indicated that time-series trends and measurement interdependencies are most important to stability prediction.</p><p><strong>Conclusion: </strong>Our results motivate the application of multidimensional analysis to other clinical problems and highlight the importance of risk factor trends and interdependencies in outcome prediction.</p>\",\"PeriodicalId\":55642,\"journal\":{\"name\":\"Estudios De Psicologia\",\"volume\":\"38 1\",\"pages\":\"24-29\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estudios De Psicologia\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocw014\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estudios De Psicologia","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocw014","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们提出了一个计算框架,用于将不同的患者测量结果整合到综合健康评分中,并将其应用于患者稳定性预测:我们提出了一个计算框架,用于将患者的各种测量数据整合到综合健康评分中,并将其应用于患者稳定性预测:我们将重症监护多参数智能监测(MIMIC)II 临床数据库中的患者回顾性数据映射到一个离散的多维空间,并在此空间中搜索与患者相关结果有关的测量组合和趋势。然后利用病人在该空间中的轨迹来预测结果。作为一项案例研究,我们建立了一个用于出院建议的病人稳定性预测工具 AutoTriage:结果:与现有工具相比,AutoTriage 能正确识别三倍数量的病情稳定患者,准确率达到 92.9%(95% CI:91.6-93.9%),同时保持 94.5% 的特异性。对AutoTriage参数的分析表明,风险因素之间的相互依存关系占每个患者稳定性评分的大部分:讨论:AutoTriage 提高了现有稳定性预测工具的灵敏度,同时考虑到了患者出院时的安全。风险因素的相对贡献表明,时间序列趋势和测量相互依存关系对稳定性预测最为重要:我们的研究结果推动了多维分析在其他临床问题中的应用,并强调了风险因素趋势和相互依存关系在结果预测中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discharge recommendation based on a novel technique of homeostatic analysis.

Objective: We propose a computational framework for integrating diverse patient measurements into an aggregate health score and applying it to patient stability prediction.

Materials and methods: We mapped retrospective patient data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II clinical database into a discrete multidimensional space, which was searched for measurement combinations and trends relevant to patient outcomes of interest. Patient trajectories through this space were then used to make outcome predictions. As a case study, we built AutoTriage, a patient stability prediction tool to be used for discharge recommendation.

Results: AutoTriage correctly identified 3 times as many stabilizing patients as existing tools and achieved an accuracy of 92.9% (95% CI: 91.6-93.9%), while maintaining 94.5% specificity. Analysis of AutoTriage parameters revealed that interdependencies between risk factors comprised the majority of each patient stability score.

Discussion: AutoTriage demonstrated an improvement in the sensitivity of existing stability prediction tools, while considering patient safety upon discharge. The relative contributions of risk factors indicated that time-series trends and measurement interdependencies are most important to stability prediction.

Conclusion: Our results motivate the application of multidimensional analysis to other clinical problems and highlight the importance of risk factor trends and interdependencies in outcome prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Estudios De Psicologia
Estudios De Psicologia PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信