东南地区农村住宅冬季采暖节能方法及经济性分析——以农村住宅为例

Rang Tu, Mengdan Liu, L. Liu
{"title":"东南地区农村住宅冬季采暖节能方法及经济性分析——以农村住宅为例","authors":"Rang Tu, Mengdan Liu, L. Liu","doi":"10.1115/imece2019-10310","DOIUrl":null,"url":null,"abstract":"\n In this paper, energy conservation approaches for residential buildings in rural area of southeast China are studied. There used to be no heating habits in rural buildings of southeast China, which is due to the relatively warm weather in winter. However, as the stand of living is increasing, heating in winter has become more popular in recent years. It is quite important to choose proper heating conservation materials taking both initial cost and operating cost into consideration. In this paper, a typical house in southern part of Henan Province is selected for study. It is a two-level house made of bricks, which was built in 2014. A set of radiators were installed for heating in winter. Water, which is heated by electrical heater, is used as heating medium for these radiators. As compared with heat pumps, draft sensation problem is avoided and temperature in the heating space is more uniform. However, operating fee is very high, which makes this heating method less attractive. To reduce power consumption of winter heating, heating load needs to be reduced and the efficiency of heating equipment needs to be increased. In this study, researches are carried out as following. First, a model is built in DeST, which is a software that can calculate hourly heating load and room temperature. Then, the effect of thermal preservation quality of envelops on room temperature and heating load are investigated. Six models with different envelopes are simulated. Then, heating load as well as power consumptions of electrical heaters and heat pumps among the six envelopes are compared. Lastly, economic analysis is carried out for the energy efficient retrofit case so that the payback period is calculated. The results show that heating load capacity of case F, envelope of which made of 240 bricks plus foamed plastic and hollow glass windows, can be reduced to 1/3 that of case A, envelope of which made of 240 bricks and single glass windows. Considering power consumptions of both compressors and fans, energy consumption density (divided by area) can be reduced from 21.6∼25 kWh·m−2·year−1 of case A, which has the worst heat conservation property, to 6.7∼7.7 kWh·m−2·year−1 of case F. If the building is improved from case A to case F and heat pumps are adopted, the payback period is 3.3∼3.8 years. Because of high cost of window retrofit and small influence of its heat conservation property on the reduction of heating capacity, it is recommended to just improve walls. Air tightness of window is more effective than thermal quality.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heating Conservation Methods and Economy Analysis of Winter Heating in Rural Residential Buildings in Southeast China: A Case Study\",\"authors\":\"Rang Tu, Mengdan Liu, L. Liu\",\"doi\":\"10.1115/imece2019-10310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, energy conservation approaches for residential buildings in rural area of southeast China are studied. There used to be no heating habits in rural buildings of southeast China, which is due to the relatively warm weather in winter. However, as the stand of living is increasing, heating in winter has become more popular in recent years. It is quite important to choose proper heating conservation materials taking both initial cost and operating cost into consideration. In this paper, a typical house in southern part of Henan Province is selected for study. It is a two-level house made of bricks, which was built in 2014. A set of radiators were installed for heating in winter. Water, which is heated by electrical heater, is used as heating medium for these radiators. As compared with heat pumps, draft sensation problem is avoided and temperature in the heating space is more uniform. However, operating fee is very high, which makes this heating method less attractive. To reduce power consumption of winter heating, heating load needs to be reduced and the efficiency of heating equipment needs to be increased. In this study, researches are carried out as following. First, a model is built in DeST, which is a software that can calculate hourly heating load and room temperature. Then, the effect of thermal preservation quality of envelops on room temperature and heating load are investigated. Six models with different envelopes are simulated. Then, heating load as well as power consumptions of electrical heaters and heat pumps among the six envelopes are compared. Lastly, economic analysis is carried out for the energy efficient retrofit case so that the payback period is calculated. The results show that heating load capacity of case F, envelope of which made of 240 bricks plus foamed plastic and hollow glass windows, can be reduced to 1/3 that of case A, envelope of which made of 240 bricks and single glass windows. Considering power consumptions of both compressors and fans, energy consumption density (divided by area) can be reduced from 21.6∼25 kWh·m−2·year−1 of case A, which has the worst heat conservation property, to 6.7∼7.7 kWh·m−2·year−1 of case F. If the building is improved from case A to case F and heat pumps are adopted, the payback period is 3.3∼3.8 years. Because of high cost of window retrofit and small influence of its heat conservation property on the reduction of heating capacity, it is recommended to just improve walls. Air tightness of window is more effective than thermal quality.\",\"PeriodicalId\":23629,\"journal\":{\"name\":\"Volume 6: Energy\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-10310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对东南农村住宅建筑节能途径进行了研究。中国东南部农村建筑过去没有供暖习惯,这是由于冬季天气相对温暖。然而,随着生活水平的提高,冬季供暖近年来变得越来越流行。考虑初始成本和运行成本,选择合适的保温材料是非常重要的。本文选取豫南一典型民居作为研究对象。这是一座两层的砖砌房子,建于2014年。安装了一套暖气片用于冬季供暖。水被电加热器加热,作为这些散热器的加热介质。与热泵相比,避免了风感问题,加热空间温度更均匀。然而,运营费用非常高,这使得这种加热方式不那么有吸引力。为了减少冬季采暖的耗电量,需要降低采暖负荷,提高采暖设备的效率。在本研究中,主要进行了以下研究。首先,在DeST中建立一个模型,这是一个可以计算每小时供暖负荷和室温的软件。然后,研究了围护结构保温质量对室温和热负荷的影响。对六个不同包络的模型进行了仿真。然后,对六种围护结构的电加热器和热泵的热负荷以及功耗进行了比较。最后,对节能改造案例进行了经济分析,计算了投资回收期。结果表明,采用240块砖+泡沫塑料+中空玻璃窗的围护结构F的热负荷能力可以降低到采用240块砖+单层玻璃窗围护结构A的1/3。考虑到压缩机和风机的功耗,能耗密度(除以面积)可从保温性能最差的情况A的21.6 ~ 25 kWh·m−2·年−1降低到情况F的6.7 ~ 7.7 kWh·m−2·年−1。如果从A改善到F,采用热泵,投资回收期为3.3 ~ 3.8年。由于窗改造成本高,且其保温性能对减热量影响小,建议仅对墙体进行改造。窗的气密性比热质量更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heating Conservation Methods and Economy Analysis of Winter Heating in Rural Residential Buildings in Southeast China: A Case Study
In this paper, energy conservation approaches for residential buildings in rural area of southeast China are studied. There used to be no heating habits in rural buildings of southeast China, which is due to the relatively warm weather in winter. However, as the stand of living is increasing, heating in winter has become more popular in recent years. It is quite important to choose proper heating conservation materials taking both initial cost and operating cost into consideration. In this paper, a typical house in southern part of Henan Province is selected for study. It is a two-level house made of bricks, which was built in 2014. A set of radiators were installed for heating in winter. Water, which is heated by electrical heater, is used as heating medium for these radiators. As compared with heat pumps, draft sensation problem is avoided and temperature in the heating space is more uniform. However, operating fee is very high, which makes this heating method less attractive. To reduce power consumption of winter heating, heating load needs to be reduced and the efficiency of heating equipment needs to be increased. In this study, researches are carried out as following. First, a model is built in DeST, which is a software that can calculate hourly heating load and room temperature. Then, the effect of thermal preservation quality of envelops on room temperature and heating load are investigated. Six models with different envelopes are simulated. Then, heating load as well as power consumptions of electrical heaters and heat pumps among the six envelopes are compared. Lastly, economic analysis is carried out for the energy efficient retrofit case so that the payback period is calculated. The results show that heating load capacity of case F, envelope of which made of 240 bricks plus foamed plastic and hollow glass windows, can be reduced to 1/3 that of case A, envelope of which made of 240 bricks and single glass windows. Considering power consumptions of both compressors and fans, energy consumption density (divided by area) can be reduced from 21.6∼25 kWh·m−2·year−1 of case A, which has the worst heat conservation property, to 6.7∼7.7 kWh·m−2·year−1 of case F. If the building is improved from case A to case F and heat pumps are adopted, the payback period is 3.3∼3.8 years. Because of high cost of window retrofit and small influence of its heat conservation property on the reduction of heating capacity, it is recommended to just improve walls. Air tightness of window is more effective than thermal quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信