银-银纳米结构层低温vecsel -金刚石非均相集成

Roozbeh Sheikhi, Yongjun Huo, F. Shi, Chin C. Lee
{"title":"银-银纳米结构层低温vecsel -金刚石非均相集成","authors":"Roozbeh Sheikhi, Yongjun Huo, F. Shi, Chin C. Lee","doi":"10.2139/ssrn.3708664","DOIUrl":null,"url":null,"abstract":"Abstract Low temperature heterogeneous integration with diamond is the key technology in pushing upwards the high-power limit of a vertically-external-cavity surface-emitting laser (VECSEL). This work successfully accomplished a functional high-power VECSEL-to-diamond device with a modified Ag-In transient liquid phase (TLP) bonding technology. The post-bonding quality of VECSEL epitaxial membrane was thoroughly examined with scanning electron microscopy (SEM), focus ion beam (FIB) and high resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Owing to the low-temperature process, thermal-activated diffusion and thermo-mechanical stress have been suppressed to the minimal level within the epitaxial layers while optimizing the heat-spreading capability of the diamond. Interestingly, with experimental and thermodynamic evidences, a distinct nanostructure from spinodal decomposition has been discovered in the Ag-In bonding layer for the first time, whose structural feature is beneficial to the reliability of a VECSEL-to-diamond device. Conceptually, this work opens a new bonding technology category, i.e., Ag-In spinodal bonding.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Low Temperature VECSEL-to-Diamond Heterogeneous Integration with Ag-In Spinodal Nanostructured Layer\",\"authors\":\"Roozbeh Sheikhi, Yongjun Huo, F. Shi, Chin C. Lee\",\"doi\":\"10.2139/ssrn.3708664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Low temperature heterogeneous integration with diamond is the key technology in pushing upwards the high-power limit of a vertically-external-cavity surface-emitting laser (VECSEL). This work successfully accomplished a functional high-power VECSEL-to-diamond device with a modified Ag-In transient liquid phase (TLP) bonding technology. The post-bonding quality of VECSEL epitaxial membrane was thoroughly examined with scanning electron microscopy (SEM), focus ion beam (FIB) and high resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Owing to the low-temperature process, thermal-activated diffusion and thermo-mechanical stress have been suppressed to the minimal level within the epitaxial layers while optimizing the heat-spreading capability of the diamond. Interestingly, with experimental and thermodynamic evidences, a distinct nanostructure from spinodal decomposition has been discovered in the Ag-In bonding layer for the first time, whose structural feature is beneficial to the reliability of a VECSEL-to-diamond device. Conceptually, this work opens a new bonding technology category, i.e., Ag-In spinodal bonding.\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3708664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3708664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要:金刚石低温非均相集成是提高垂直外腔面发射激光器(VECSEL)高功率极限的关键技术。这项工作成功地完成了一个功能性的高功率VECSEL-to-diamond器件,该器件采用了改进的银-银瞬态液相(TLP)键合技术。采用扫描电镜(SEM)、聚焦离子束(FIB)和高分辨率高角度环形暗场扫描透射电镜(HAADF-STEM)对VECSEL外延膜的键合后质量进行了全面检测。由于低温工艺,热活化扩散和热机械应力在外延层内被抑制到最低水平,同时优化了金刚石的热扩散能力。有趣的是,通过实验和热力学证据,首次在Ag-In键合层中发现了一种独特的spinodal分解纳米结构,其结构特征有利于VECSEL-to-diamond器件的可靠性。从概念上讲,这项工作开辟了一个新的键合技术类别,即银银旋键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Temperature VECSEL-to-Diamond Heterogeneous Integration with Ag-In Spinodal Nanostructured Layer
Abstract Low temperature heterogeneous integration with diamond is the key technology in pushing upwards the high-power limit of a vertically-external-cavity surface-emitting laser (VECSEL). This work successfully accomplished a functional high-power VECSEL-to-diamond device with a modified Ag-In transient liquid phase (TLP) bonding technology. The post-bonding quality of VECSEL epitaxial membrane was thoroughly examined with scanning electron microscopy (SEM), focus ion beam (FIB) and high resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Owing to the low-temperature process, thermal-activated diffusion and thermo-mechanical stress have been suppressed to the minimal level within the epitaxial layers while optimizing the heat-spreading capability of the diamond. Interestingly, with experimental and thermodynamic evidences, a distinct nanostructure from spinodal decomposition has been discovered in the Ag-In bonding layer for the first time, whose structural feature is beneficial to the reliability of a VECSEL-to-diamond device. Conceptually, this work opens a new bonding technology category, i.e., Ag-In spinodal bonding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信