通过基于神经网络计算的传感器融合特征增强雷达成像

Yuriy V. Shkvarko, Josue Lopez, Konstantin Lukin, Stewart R. Santos, Guillermo Garcia-Torales
{"title":"通过基于神经网络计算的传感器融合特征增强雷达成像","authors":"Yuriy V. Shkvarko, Josue Lopez, Konstantin Lukin, Stewart R. Santos, Guillermo Garcia-Torales","doi":"10.1109/MSMW.2016.7538156","DOIUrl":null,"url":null,"abstract":"We address a novel neural network (NN) computing-based approach to the problem of feature enhanced (FE) fusion of remote sensing (RS) imagery acquired with different coherent radar/SAR sensing modalities. The novel proposition consists in adapting the Hopfield-type maximum entropy NN (MENN) computational framework to solving the FE image recovery inverse problems with adaptive multiple sensor data fusion that preserves salient radar/SAR image features. The FE fusion is performed via aggregating the descriptive experiment design and the theoretical informatics inspired maximum entropy regularization frameworks for iterative minimization of the energy function of the multistate MENN with adaptive adjustments of the MENN's synaptic weights and bias inputs. We also feature on the computational implementation issues of the MENN-based multi-sensor radar/SAR data fusion and verify the overall image enhancement efficiency via computer simulations with real-world RS imagery.","PeriodicalId":6504,"journal":{"name":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","volume":"52 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature enhanced radar imaging via neural network computing-based sensor fusion\",\"authors\":\"Yuriy V. Shkvarko, Josue Lopez, Konstantin Lukin, Stewart R. Santos, Guillermo Garcia-Torales\",\"doi\":\"10.1109/MSMW.2016.7538156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address a novel neural network (NN) computing-based approach to the problem of feature enhanced (FE) fusion of remote sensing (RS) imagery acquired with different coherent radar/SAR sensing modalities. The novel proposition consists in adapting the Hopfield-type maximum entropy NN (MENN) computational framework to solving the FE image recovery inverse problems with adaptive multiple sensor data fusion that preserves salient radar/SAR image features. The FE fusion is performed via aggregating the descriptive experiment design and the theoretical informatics inspired maximum entropy regularization frameworks for iterative minimization of the energy function of the multistate MENN with adaptive adjustments of the MENN's synaptic weights and bias inputs. We also feature on the computational implementation issues of the MENN-based multi-sensor radar/SAR data fusion and verify the overall image enhancement efficiency via computer simulations with real-world RS imagery.\",\"PeriodicalId\":6504,\"journal\":{\"name\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"volume\":\"52 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMW.2016.7538156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2016.7538156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的基于神经网络(NN)计算的方法来解决不同相干雷达/SAR感知方式获取的遥感(RS)图像的特征增强(FE)融合问题。该新方案采用hopfield型最大熵神经网络(MENN)计算框架,通过自适应多传感器数据融合来解决FE图像恢复逆问题,同时保留雷达/SAR图像的显著特征。通过自适应调整MENN的突触权重和偏置输入,将描述性实验设计和理论信息学启发的最大熵正则化框架聚合在一起,实现了多态MENN能量函数的迭代最小化。我们还重点讨论了基于menn的多传感器雷达/SAR数据融合的计算实现问题,并通过真实RS图像的计算机模拟验证了整体图像增强效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature enhanced radar imaging via neural network computing-based sensor fusion
We address a novel neural network (NN) computing-based approach to the problem of feature enhanced (FE) fusion of remote sensing (RS) imagery acquired with different coherent radar/SAR sensing modalities. The novel proposition consists in adapting the Hopfield-type maximum entropy NN (MENN) computational framework to solving the FE image recovery inverse problems with adaptive multiple sensor data fusion that preserves salient radar/SAR image features. The FE fusion is performed via aggregating the descriptive experiment design and the theoretical informatics inspired maximum entropy regularization frameworks for iterative minimization of the energy function of the multistate MENN with adaptive adjustments of the MENN's synaptic weights and bias inputs. We also feature on the computational implementation issues of the MENN-based multi-sensor radar/SAR data fusion and verify the overall image enhancement efficiency via computer simulations with real-world RS imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信