新合成的2-氯-1-(3-甲基-3-甲酰基-环丁基)-乙酮的DFT计算

{"title":"新合成的2-氯-1-(3-甲基-3-甲酰基-环丁基)-乙酮的DFT计算","authors":"","doi":"10.33263/lianbs124.114","DOIUrl":null,"url":null,"abstract":"The synthesis of cyclobutane rings, particularly stereospecifically, poses significant challenges in synthetic chemistry due to the highly strained ring topologies. The cyclobutane-containing natural products are appealing targets for total synthesis due to their new chemical structures and exceptional biological activity. In this study, we have presented the synthesis and structure analysis of 2-chloro-1-(3-methyl-3-mesityl-cyclobutyl)–ethanone. The molecular elucidation was conducted by Fourier transform infrared (IR) and Nuclear magnetic spectroscopy (NMR). The I recording in 4000-500cm-1 was done in the potassium bromide solid phase, while the NMR for both Hydrogen and Carbon was done in the Dimethyl sulfoxide-6. Density functional theory (DFT) was used to stimulate and confirm the structure and molecular characterization. Using DFT/cc-pVDZ method to study various conformers of the compound and their minimum energies by the scanning potential energy surface. In addition, the molecular electrostatic potential map (MEP) and charge spreading have been plotted for the molecule to account for the chemical reactivity and site selectivity. Furthermore, the thermodynamic properties of the molecule have been studied. A good correlation was found between experimental and stimulation studies for Fourier transform infrared and Nuclear magnetic spectroscopy results. In the stimulation data, the conformer's energy differences were very small.","PeriodicalId":18009,"journal":{"name":"Letters in Applied NanoBioScience","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT Calculation for Newly Synthesized 2-Chloro-1-(3-methyl-3-mesityl-cyclobutyl)– ethanone\",\"authors\":\"\",\"doi\":\"10.33263/lianbs124.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of cyclobutane rings, particularly stereospecifically, poses significant challenges in synthetic chemistry due to the highly strained ring topologies. The cyclobutane-containing natural products are appealing targets for total synthesis due to their new chemical structures and exceptional biological activity. In this study, we have presented the synthesis and structure analysis of 2-chloro-1-(3-methyl-3-mesityl-cyclobutyl)–ethanone. The molecular elucidation was conducted by Fourier transform infrared (IR) and Nuclear magnetic spectroscopy (NMR). The I recording in 4000-500cm-1 was done in the potassium bromide solid phase, while the NMR for both Hydrogen and Carbon was done in the Dimethyl sulfoxide-6. Density functional theory (DFT) was used to stimulate and confirm the structure and molecular characterization. Using DFT/cc-pVDZ method to study various conformers of the compound and their minimum energies by the scanning potential energy surface. In addition, the molecular electrostatic potential map (MEP) and charge spreading have been plotted for the molecule to account for the chemical reactivity and site selectivity. Furthermore, the thermodynamic properties of the molecule have been studied. A good correlation was found between experimental and stimulation studies for Fourier transform infrared and Nuclear magnetic spectroscopy results. In the stimulation data, the conformer's energy differences were very small.\",\"PeriodicalId\":18009,\"journal\":{\"name\":\"Letters in Applied NanoBioScience\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied NanoBioScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/lianbs124.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied NanoBioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/lianbs124.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于环的高度应变拓扑结构,环丁烷环的合成,特别是立体特异性环的合成,在合成化学中提出了重大挑战。含环丁烷的天然产物因其新的化学结构和特殊的生物活性而成为全合成的重要目标。本文报道了2-氯-1-(3-甲基-3-甲酰基-环丁基)乙酮的合成及结构分析。利用傅里叶变换红外(IR)和核磁共振(NMR)进行了分子解析。在4000-500cm-1范围内的核磁共振记录是在溴化钾固相中进行的,而氢和碳的核磁共振是在二甲基亚砜-6中进行的。利用密度泛函理论(DFT)对其结构和分子表征进行了模拟和验证。利用DFT/cc-pVDZ方法通过扫描势能面研究了化合物的各种构象及其最小能。此外,还绘制了分子静电势图(MEP)和电荷扩散图,以解释分子的化学反应性和位点选择性。此外,还研究了该分子的热力学性质。傅里叶变换红外和核磁波谱的实验和模拟结果之间有很好的相关性。在增产数据中,整形器的能量差非常小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFT Calculation for Newly Synthesized 2-Chloro-1-(3-methyl-3-mesityl-cyclobutyl)– ethanone
The synthesis of cyclobutane rings, particularly stereospecifically, poses significant challenges in synthetic chemistry due to the highly strained ring topologies. The cyclobutane-containing natural products are appealing targets for total synthesis due to their new chemical structures and exceptional biological activity. In this study, we have presented the synthesis and structure analysis of 2-chloro-1-(3-methyl-3-mesityl-cyclobutyl)–ethanone. The molecular elucidation was conducted by Fourier transform infrared (IR) and Nuclear magnetic spectroscopy (NMR). The I recording in 4000-500cm-1 was done in the potassium bromide solid phase, while the NMR for both Hydrogen and Carbon was done in the Dimethyl sulfoxide-6. Density functional theory (DFT) was used to stimulate and confirm the structure and molecular characterization. Using DFT/cc-pVDZ method to study various conformers of the compound and their minimum energies by the scanning potential energy surface. In addition, the molecular electrostatic potential map (MEP) and charge spreading have been plotted for the molecule to account for the chemical reactivity and site selectivity. Furthermore, the thermodynamic properties of the molecule have been studied. A good correlation was found between experimental and stimulation studies for Fourier transform infrared and Nuclear magnetic spectroscopy results. In the stimulation data, the conformer's energy differences were very small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信