光谱绽放过滤器的客户端搜索

Parth Parikh, Mrunank Mistry, Dhruvam Kothari, S. Khachane
{"title":"光谱绽放过滤器的客户端搜索","authors":"Parth Parikh, Mrunank Mistry, Dhruvam Kothari, S. Khachane","doi":"10.1109/IEMCON51383.2020.9284946","DOIUrl":null,"url":null,"abstract":"A Bloom filter is a space-efficient probabilistic data structure that allows for set membership queries with some degree of false positives. In this paper, we propose a technique to add search functionality using a variant of Bloom filters - Spectral Bloom filters. Apart from being space-efficient, our proposed solution produces results comparable to search techniques such as Inverted Index and is a strong candidate for client-side searching.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"31 1","pages":"0867-0875"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Bloom Filters for Client Side Search\",\"authors\":\"Parth Parikh, Mrunank Mistry, Dhruvam Kothari, S. Khachane\",\"doi\":\"10.1109/IEMCON51383.2020.9284946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Bloom filter is a space-efficient probabilistic data structure that allows for set membership queries with some degree of false positives. In this paper, we propose a technique to add search functionality using a variant of Bloom filters - Spectral Bloom filters. Apart from being space-efficient, our proposed solution produces results comparable to search techniques such as Inverted Index and is a strong candidate for client-side searching.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"31 1\",\"pages\":\"0867-0875\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布隆过滤器是一种空间效率高的概率数据结构,它允许具有一定程度误报的集合成员查询。在本文中,我们提出了一种技术来增加搜索功能,使用布隆过滤器的一种变体-光谱布隆过滤器。除了节省空间之外,我们提出的解决方案产生的结果可与诸如倒置索引之类的搜索技术相媲美,并且是客户端搜索的有力候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Bloom Filters for Client Side Search
A Bloom filter is a space-efficient probabilistic data structure that allows for set membership queries with some degree of false positives. In this paper, we propose a technique to add search functionality using a variant of Bloom filters - Spectral Bloom filters. Apart from being space-efficient, our proposed solution produces results comparable to search techniques such as Inverted Index and is a strong candidate for client-side searching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信