负工艺阻尼下车削的主要颤振和极限切屑负载

Ming-Jen Hsu, Jiunn-Jyh Wang
{"title":"负工艺阻尼下车削的主要颤振和极限切屑负载","authors":"Ming-Jen Hsu, Jiunn-Jyh Wang","doi":"10.1115/msec2022-85293","DOIUrl":null,"url":null,"abstract":"\n This paper presents an analysis of primary chatter under velocity-induced negative process damping in the peripheral outer diameter turning of medium carbon steel. A first-order approximation model of the instant specific cutting force with respect to dynamic cutting speed was established and the slope was defined as the specific process damping coefficient (SPDC) to investigate the negative process damping with respect to cutting speed, depth of cut, and chip thickness. The process damping coefficient was defined as the product of the specific process damping coefficient and chip load. The total system damping coefficient as the sum of the process damping coefficient and structural damping coefficient determines the system stability and predict primary chatter. The SPDCs were obtained through experiments under various speeds, feeds, and depths of cut by using a tool system with force sensors and accelerometers. The SPDCs were insensitive to cutting speeds of 2.5 to 5.5 m/sec and ranged from −1514 and −716 MPa·s/m for feeds per revolution of 0.058 to 0.118 mm, respectively. The higher negative SPDC at smaller chip thickness reduces the limiting stable chip load. Equations for the limiting chip load and limiting depth of cut were derived and validated by experiments. Stability diagrams of limiting chip load and limiting depth with respect to feed per revolution were created to provide guidance on preventing primary chatter.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primary Chatter and Limiting Chip Load in Turning Under Negative Process Damping\",\"authors\":\"Ming-Jen Hsu, Jiunn-Jyh Wang\",\"doi\":\"10.1115/msec2022-85293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents an analysis of primary chatter under velocity-induced negative process damping in the peripheral outer diameter turning of medium carbon steel. A first-order approximation model of the instant specific cutting force with respect to dynamic cutting speed was established and the slope was defined as the specific process damping coefficient (SPDC) to investigate the negative process damping with respect to cutting speed, depth of cut, and chip thickness. The process damping coefficient was defined as the product of the specific process damping coefficient and chip load. The total system damping coefficient as the sum of the process damping coefficient and structural damping coefficient determines the system stability and predict primary chatter. The SPDCs were obtained through experiments under various speeds, feeds, and depths of cut by using a tool system with force sensors and accelerometers. The SPDCs were insensitive to cutting speeds of 2.5 to 5.5 m/sec and ranged from −1514 and −716 MPa·s/m for feeds per revolution of 0.058 to 0.118 mm, respectively. The higher negative SPDC at smaller chip thickness reduces the limiting stable chip load. Equations for the limiting chip load and limiting depth of cut were derived and validated by experiments. Stability diagrams of limiting chip load and limiting depth with respect to feed per revolution were created to provide guidance on preventing primary chatter.\",\"PeriodicalId\":23676,\"journal\":{\"name\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了中碳钢外径外径车削过程中速度负阻尼作用下的初级颤振。建立了瞬时比切削力与动态切削速度的一阶近似模型,并将斜率定义为比工艺阻尼系数(SPDC),研究了与切削速度、切削深度和切屑厚度相关的负工艺阻尼。将工艺阻尼系数定义为具体工艺阻尼系数与芯片载荷的乘积。系统总阻尼系数作为过程阻尼系数和结构阻尼系数的总和,决定了系统的稳定性并预测了系统的初始颤振。利用带有力传感器和加速度计的刀具系统,在不同的切削速度、进给量和切削深度下进行了实验,得到了spdc。spdc对2.5 ~ 5.5 m/s的切削速度不敏感,对于0.058 ~ 0.118 mm的转速,spdc的变化范围分别为- 1514 ~ - 716 MPa·s/m。在较小的芯片厚度下,较高的负SPDC降低了芯片的极限稳定负载。推导了极限切屑载荷和极限切削深度的计算公式,并通过实验进行了验证。创建了限制芯片负载和限制深度相对于每转进给的稳定性图,以提供防止初级颤振的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primary Chatter and Limiting Chip Load in Turning Under Negative Process Damping
This paper presents an analysis of primary chatter under velocity-induced negative process damping in the peripheral outer diameter turning of medium carbon steel. A first-order approximation model of the instant specific cutting force with respect to dynamic cutting speed was established and the slope was defined as the specific process damping coefficient (SPDC) to investigate the negative process damping with respect to cutting speed, depth of cut, and chip thickness. The process damping coefficient was defined as the product of the specific process damping coefficient and chip load. The total system damping coefficient as the sum of the process damping coefficient and structural damping coefficient determines the system stability and predict primary chatter. The SPDCs were obtained through experiments under various speeds, feeds, and depths of cut by using a tool system with force sensors and accelerometers. The SPDCs were insensitive to cutting speeds of 2.5 to 5.5 m/sec and ranged from −1514 and −716 MPa·s/m for feeds per revolution of 0.058 to 0.118 mm, respectively. The higher negative SPDC at smaller chip thickness reduces the limiting stable chip load. Equations for the limiting chip load and limiting depth of cut were derived and validated by experiments. Stability diagrams of limiting chip load and limiting depth with respect to feed per revolution were created to provide guidance on preventing primary chatter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信